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I. INTRODUCTION

The digitalization and monitoring of processes have led to
the existence of large databases that systematically and contin-
uously collect information. Sectors as diverse as e-commerce,
healthcare, or transportation are just a few examples of the
central role that data play in today’s society.

In this context, data visualization emerges as a key tool
for understanding and extracting useful knowledge from these
large volumes of information. Representing data visually fa-
cilitates the identification of patterns, trends, and relationships
that would be difficult to detect through conventional numer-
ical or statistical analysis.

The electricity sector is no exception to this transforma-
tion. The digitalization and monitoring of energy genera-
tion, transmission, and distribution systems have enabled the
collection of large amounts of data during grid operation.
However, power systems are typically operated conservatively,
prioritizing system security and stability under potentially
risky situations. Consequently, failure or instability events are
relatively rare, making it difficult to obtain sufficient real-
world data to analyze system behavior in detail under such
scenarios. To address this limitation, a common strategy is
to generate synthetic data through simulations that reproduce
diverse operating points and explore system responses under
adverse conditions.

Within this context, this paper focuses on a database con-
taining an extensive set of operating points of the power grid,
randomly sampled within its feasible operating space. For
each point, system stability is assessed, resulting in a large
and diverse dataset that enables the exploration of different
visualization methods with the aim of extracting relevant
insights about system stability.

The main objective of this work is to apply data visualiza-
tion and analysis techniques to explore and identify patterns
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that may be significant. Through this approach, the aim is to
determine which factors have the most relevant influence on
grid stability, in order to better understand system behavior
and provide a solid foundation for future research directions
or potential improvements in grid operation and management.

II. METHODOLOGY

The main objective of this work is to apply data visualiza-
tion and analysis techniques to explore and identify patterns
that may prove significant. Through this approach, the aim is
to determine which factors exert the most relevant influence on
grid stability, in order to better understand system behavior and
provide a solid basis for future research directions or potential
improvements in grid operation and management.

The main challenge arises from the size of the dataset under
study, which includes many variables and a large number of
samples. The task, therefore, consists of extracting meaningful
insights from the dataset using existing visualization and data
analysis techniques.

This section describes the methodological pipeline followed
to analyze the stability dataset and evaluate the suitability
of different machine-learning techniques for extracting mean-
ingful patterns. The overall process consists of four stages:
data preprocessing, dimensionality reduction, clustering, and
visualization.

A. Data Preprocessing

The dataset contains a large number of operating points of
the electrical network, each described by multiple numerical
and categorical variables, along with a binary stability label.
All numerical variables were standardized to zero mean and
unit variance:
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where ;1 and o denote the feature mean and standard
deviation, respectively. Standardization is crucial to ensure



that all variables contribute equally to the subsequent learning
algorithms.

Categorical attributes, such as generator control modes,
were encoded numerically when required. No missing values
were present, thus no imputation procedures were applied.

B. Dimensionality Reduction

Given the high dimensionality of the dataset, three
dimensionality-reduction techniques were used to obtain low-
dimensional representations suitable for pattern exploration
and visualization.

1) Principal Component Analysis (PCA): PCA is a linear
technique that computes orthogonal directions (principal com-
ponents) maximizing the variance of the projected data [1].
The transformation is given by:

Z=XW, 2

where X is the standardized data matrix and W the matrix
of eigenvectors of the covariance matrix X " X. PCA provides
a baseline representation and offers insight into the dominant
modes of variation in the dataset.

2) t-Distributed Stochastic Neighbor Embedding (t-SNE):
t-SNE is a nonlinear embedding method designed to preserve
local neighborhood relationships [2]. It models pairwise sim-
ilarities in the high-dimensional and low-dimensional spaces
using conditional probability distributions and minimizes their
Kullback-Leibler (KL) divergence:
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Although computationally intensive, t-SNE frequently re-
veals meaningful cluster structures hidden in high-dimensional
data.

3) Uniform Manifold Approximation and Projection
(UMAP): UMAP is a nonlinear method based on Riemannian
geometry and topological data analysis [3]. The algorithm
constructs a weighted graph of nearest neighbors and
optimizes a low-dimensional representation by minimizing a
cross-entropy objective:
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where w;; are graph weights, d;; is the low-dimensional
distance, and o(-) is a differentiable approximation of a step
function. UMAP is computationally efficient and preserves
both local and global structure more effectively than t-SNE.

C. Clustering Methods

After reducing dimensionality, clustering algorithms were
applied to evaluate whether the dataset exhibits natural group-
ings that correspond to stability properties or other operational
regimes.

1) k-Means Clustering: k-Means is a centroid-based clus-
tering algorithm that partitions data into & clusters by mini-
mizing the within-cluster sum of squared distances [4]:
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where C; denotes the i-th cluster and p; its centroid. Several
values of k were tested to analyze cluster granularity. Although
simple and fast, k-means assumes spherical cluster shapes and
may struggle with irregular structures.

2) DBSCAN: DBSCAN is a density-based clustering
method that groups points closely packed together while
marking isolated points as noise [5]. Two parameters must be
selected: the neighborhood radius ¢ and the minimum number
of neighbors minPts. A point p is a core point if:

{a:llp—qll <e}| > minPts. (6)

DBSCAN is well suited for identifying arbitrarily shaped
clusters and is robust to noise, making it appropriate for
datasets with potentially complex geometric structures.

D. Visualization and Evaluation

Low-dimensional embeddings from PCA, t-SNE, and
UMAP were visualized in two-dimensional scatter plots, with
each point colored according to its stability label. These
visualizations allow a qualitative assessment of whether the
embedding techniques reveal separability between stable and
unstable operating points.

Clustering results (from k-means and DBSCAN) were
projected onto the same embeddings to examine whether
algorithmic clusters align with meaningful system behaviors.
Although the analysis is unsupervised, this qualitative evalua-
tion provides insight into the structure of the dataset and the
ability of the methods to capture relevant operational patterns
of the electrical network.

III. CASE STUDY

The network used to generate the dataset for this project is
the NREL-118 system [6]. Figure 1 shows a schematic of the
network.

This system consists of 118 buses divided into 3 regions and
53 generators that can operate with different energy sources.
Specifically:

o Synchronous Generators (SG): Corresponding to con-

ventional and hydropower units.

o Converter-Interfaced Generators (CIG): Correspond-

ing to solar and wind power units.

Of the 53 generators, 18 are equipped with CIG technology.
Furthermore, CIG units can operate under two different con-
trol modes, Grid-following (GFOL) or Grid-forming (GFOR).
Although their specific operation will not be detailed here,
the presence of one mode or the other affects grid stability
differently and is therefore an important parameter to consider.
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Fig. 1. NREL-118 Network
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