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ABSTRACT Several studies have demonstrated the potential of machine learning methods to solve optimal
power flow problems. However, designing a scalable physics-informed neural network (PINN) model that
can improve its performance being trained in diverse scenarios by considering the significance of its several
elements remains a challenging task. Here, we propose an approach that leverages the inclusion of physical
constraints into the loss function using a penalty factor and the utilization of bounds of optimization
variables in the activation functions to enhance the generalization performance of tuned neural networks.
The results indicate that this method significantly improves the success rate and computational speed gains
of AC-optimal power flow (AC-OPF) calculations, especially when forward predictions are employed as
warm-start points. Our PINN models are trained using accurate AC-OPF solutions from slow high-precision
interior-point solvers across several power system scenarios. Furthermore, we examine and demonstrate the
critical role of adjusting PINN’s hyperparameters and architecture design in achieving the optimal tradeoff
between empirical error and constraint violation to make accurate and feasible predictions. A combination
of stochastic methods and grid search is utilized to establish a reliable and efficient way of performing
optimization calculations for a wide range of power systems using collected data. The proposed PINN
model offers a promising solution for adapting neural networks to diverse scenarios of a physical problem.
Furthermore, it offers a robust methodology for successfully addressing optimal power flow (OPF) problems

in power systems.

INDEX TERMS Hyperparameters, optimal power flow, physics-informed neural networks, warm start.

I. INTRODUCTION

Modern power systems are experiencing a deep transforma-
tion due to the high penetration of renewable generation [1].
As power systems continue to grow in complexity, the need to
improve computational power and adopt innovative strategies
to coordinate multiple energy sources, storage units, and
network assets becomes crucial to optimize their performance
and ensure a stable and efficient energy supply [2], [3].
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The growing sophistication of power systems highlights
the significance of Optimal Power Flow (OPF) solutions
in effectively managing power flow in modern power
networks, making it a challenge to compute them without
compromising the conflicting objectives of robustness and
accuracy.

The current state-of-the-art optimization methods for non-
convex large systems include trust region methods, stochastic
gradient descent, and derivative-free optimization algorithms,
which have been shown to provide robust and efficient
solutions for a variety of problems [4], [5]. The interior
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point method has been shown to be a robust optimization
method, able to handle a wide range of systems with good
performance, and being the most widely used method for
resolving OPF [6], [7], [8]. Despite its high efficiency as an
iterative algorithm, it requires the computation of the second
derivatives of the Lagrangian of the system, at each iteration
step. Moreover, the non-convex nature of the power flow
equations appearing in the equality constraints can make this
method prohibitively slow for large-scale systems [9].

An innovative approach to achieving efficient OPF solu-
tions is the use of artificial neural networks (ANN). In recent
years, machine learning techniques have gained significant
attention due to their ability to handle complex and nonlinear
relationships with learning models inspired by the structure
and function of the human brain [10], [11]. Additional
developments in recent years have also made it possible
to apply them to real-world problems in the power sector,
such as state estimation, power system stability analysis,
and voltage control; making them a promising tool for the
operation of power systems [12], [13], [14], [15], [16].

In particular, warm-start methods have been extensively
researched and employed in the optimization of power
systems to improve the efficiency and speed of finding an
optimal solution [17], [18], [19]. The idea behind these
methods is to use an initial solution as a starting point rather
than starting the optimization process from scratch, which
can significantly reduce the time required to find a solution.
Research in this area strives to improve the accuracy and
efficiency of power systems optimization. Reference [20]
presents the notion that traditional warm-start techniques,
such as relying solely on the previous operating point, may
not necessarily capture the dynamics introduced by new
inputs in some problems, reinforcing the notion that there
is a need to find more effective warm-start approaches. Fur-
thermore, [21] proposes an alternative warm-start algorithm
for interior point methods using previous solutions which
reduces the number of iterations by around 80%, highlighting
the potential of alternative warm-start approaches using
statistical predictive techniques, which can lead to improved
computational efficiency and solution quality in a wider
range of problems. Along similar lines, one trend is to use
neural networks and decision trees to model a power grid and
produce an initial solution to warm start the optimization [17],
[18], [19], [22].

The existing methods can make fast regressions with
ANNs which can be trained with any data size. However, this
type of work focuses on attempting to match, individually,
variables’ optimal values, but the predicted values provided
by these end-to-end methods are not guaranteed to belong
to the feasible operating region [23], [24]. Violating physical
constraints and laws may result in substantially longer solve
times or even convergence failure; and, additionally, severe
security issues for real power grids.

To tackle this issue, Physics Informed Neural Networks
(PINNs) have also gained attention as they incorporate

135914

physical constraints and laws into machine learning models,
resulting in high accuracy levels with simpler neural network
architectures, especially shallow neural networks with a sin-
gle hidden layer [25], and requiring considerably less training
data [26]. In addition, some studies refer to similar concepts
as Physics-Aware Neural Networks [27] and Physics-Guided
Deep Neural Networks [28] by exploiting the topology and
physical laws governing the power grid to estimate the state
of the system and perform a power flow analysis.

PINNs have been proven to significantly improve the
accuracy and reliability of predictions while aiming for
physically feasible solutions [29], [30], [31], [32], [33].
Moreover, recent research suggests that to ensure the
monitoring of grid operating conditions, the estimation of
the state of the power system in real time using deep neural
networks requires only offline training and minimal tuning
effort to outperform traditional energy system estimation
schemes [34]. In fact, numerical results demonstrate that the
proposed methods outperform other alternatives and can be
easily extended to address different test systems by adjusting
only a few hyperparameters [35].

The development of such methods is important to ensure
that ANNs are appropriately designed and optimized for
the given problem and data, and provide more accurate and
reliable predictions for power systems optimization.

Although PINNs have shown great potential in solving
problems in power systems; indicating a potential for greater
accuracy and faster convergence than regular ANNSs, there are
still some gaps in the existing knowledge about using them for
optimality in power systems.

Although it is common to see statements in research papers
on PINNs or neural networks in general that suggest that
hyperparameters, activation functions, architecture, and other
design choices should be made based on the nature of the
problem and the data, these statements often lack sufficient
detail and guidance for practitioners. In reality, the process
of selecting appropriate hyperparameters and architecture
can be highly complex and involve a significant amount of
trial and error. Furthermore, many researchers simply rely
on common practices or intuition to guide their decisions,
rather than conducting rigorous experimentation to determine
the best design choices. As a result, researchers need to
provide more detailed and nuanced guidance on the selection
of hyperparameters and architecture, backed by empirical
evidence and thorough experimentation. Only then can we
be confident that our models are appropriately designed and
optimized for the given problem and data.

While ANNs can be designed, parametrized, and reg-
ularized in a methodical way to fit the input data and
desired output, the generalization ability of PINNs is still
not well understood. Although the literature provides several
examples of the efficacy of PINNs for specific cases and
the approach is theoretically attractive, there is limited
consensus and knowledge on its applicability. To address
these challenges, we present a multilevel optimization
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method for determining the essential hyperparameters and
architecture of the networks, to reduce violations generally
for different scales and grid topologies, while regularizing the
learning procedure.

Furthermore, the results predicted by current approaches
are slightly more feasible but still do not guarantee them to
be feasible points, unlike the claimed advantage of PINNSs.
Additionally, previous studies do not provide a detailed
examination of integration with other optimization tech-
niques. Therefore, the proposed research aims to compare
the performance of shallow PINNs with a single hidden layer
against other numerical solvers to understand their relative
strengths and limitations and to evaluate the stabilization and
regularization of the results that the physical constraints in the
model provide.

In summary, this paper presents a novel approach lever-
aging physics-informed neural networks (PINNs) to enhance
the efficiency and accuracy of optimal power flow (OPF)
solutions in power systems. The key contributions include
the incorporation of physical constraints into the neural
network architecture, hyperparameter tuning for optimal
tradeoffs between empirical error and constraint viola-
tions, and the demonstration of significant improvements
in computational efficiency and success rates for OPF
calculations. These advancements address critical challenges
in power system optimization, particularly in the context
of increasing complexity and renewable energy integration.
Moreover, the proposed methodology offers a promising
solution for adapting neural networks to diverse scenarios and
improving the robustness of OPF solutions. By comparing
and contrasting our findings with related research, such as
the work presented in the NSF papers on machine-learning
approaches for predicting AC-OPF solutions [36], we assert
the unique contributions of our study to the field of power
systems optimization. Specifically, our approach offers a
complementary perspective, emphasizing the integration of
physics-based constraints and the optimization of hyperpa-
rameters to achieve more accurate and feasible OPF solutions
efficiently. Through empirical validation and computational
characterization, we demonstrate the effectiveness and prac-
tical applicability of our proposed methodology, highlighting
its potential to advance the state-of-the-art in power system
optimization.

In this study, we show that:

« Incorporating physical constraints into the loss function,
and bounds in the activation function to make a
physics-informed design of architecture can improve
the generalization performance of neural networks, and
the classic regularization techniques in neural networks
become irrelevant when implementing PINNs.

« Hyperparameter tuning is critical for selecting the best
tradeoff point between empirical error and constraint
violations when using penalty factors to weight con-
straint violations. By staying within the stable learning
region, where the network produces accurate predictions
consistent with the physical behavior of the system,
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it is possible to optimize the performance of the
physics-informed neural network.

o There exists a critical balancing region of the penalty
factor. In this region, PINNs face challenges in balancing
the fit to the data and constraint violations, which results
in an increase in empirical error.

« Itis possible to identify a maximum value of the penalty
factor, beyond which the network becomes unstable
and experiences numerical instabilities during training,
making it impossible to learn.

o The proposed approach can significantly improve the
computational efficiency and success rate of the opti-
mization algorithm for AC-OPF in power systems,
compared to starting from scratch, significantly reduc-
ing computational time and failure.

The rest of this paper is structured as follows. Section II
presents the used model of a generic electrical power system.
Section III explains our physics-informed neural network
architecture and training design. Section IV describes our
data collection, simulations, and evaluation methodology
for enhancing the network performance and choosing
hyperparameters. Section V presents a detailed analysis of
our computational characterization and validation results.
Section V discusses the implications of the study and
conclusions along with future research directions.

Il. POWER NETWORK MODEL

Consider an electrical power system consisting of n buses
denoted by i € N = {1, ..., n}, where each bus represents
a location within the power grid. Among these buses, there
are ng generator buses denoted by k € G C N, which
are responsible for injecting power into the system. The
power flows through n; transmission or distribution lines
corresponding to directed edges ez € € C N x N, which
form the backbone of the system.

To model the power system per-unit, we introduce the
optimal power flow variables, including the three types of
nodes: load, generator (PV), and voltage-controlled (PQ)
buses. The state of the power grid, denoted by y, determines
the current operating condition of the system and is
represented by a vector y including the voltage magnitude and
angle, active and reactive power injections from generators,
and reactive power injection from voltage-controlled buses.
Specifically, we represent the voltage magnitude and angle
of bus i as v; = v; - e/, where v; is the voltage magnitude
and §; is the angle. The active and reactive power injections
from generator bus k are denoted by py and g, respectively.
The reactive power injection from voltage-controlled bus m
is denoted by ¢,,. Hence, to represent the state of the system,
the following vector y is used:

y=[6 v p gq] erRM, 1)

where ,v € R", p € R", g € R and npp
is the number of voltage-controlled buses. In addition to
the state variables, the model takes into account the active
pl‘.l and reactive q;.i power loads at each bus i, as well as
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time-varying parameters that represent demand response or
available capacity, represented by the measurable input vector
x € R+, which influence the behavior of the system.

A. AC-OPF OPERATOR FORMULATION

The operation of an electrical grid involves ascertaining the
state y with optimal operating conditions of the power system
while taking into account the cost-benefit relationship and
restrictions of the entire system. This optimization problem
can be formulated as an alternating current optimal power
flow (AC-OPF) problem [37], where the goal is to minimize
an objective function f (-) : R — R that quantifies the
production cost of all generators.

myin VO))

st. h(x,y) =0 )
gx,y) =0

y=<y=y

This formulation gives the possibility of looking at the
optimization problem as an operator [38] that maps the grid
input x to the optimal value y* of the optimization variables
y € RM., establishing a non-linear relationship between the
two vectors as an AC-OPF operator i (-). To simplify the
notation used throughout the rest of the paper, the optimal
value will be referred to as y, rather than y*.

y=v 3

B. CONSTRAINTS FOR INTERCONNECTED POWER GRIDS

The efficient operation of interconnected power grids
requires balancing power flow under various operating
conditions and satisfying the AC power flow equations
(AC-PF) that describe power injections at each node. The
AC-PF equations can be written in terms of the optimal power
flow variables [39], [40], [41].

n
pf—pf =vi D vk (gik cos S + b sindy) Vie N (4)
k=1

n
4@ —ql = ka (gix Sin8jx — bix cos i) Yie N (5)
k=1

Here, pf and p? are the active power generated and
consumed at node i, respectively, while qf and qf are the
corresponding reactive power values. The angle difference
between node i and node k is denoted by 8 = d; — &, and
gik and by are the entries of the real and imaginary parts of
the bus admittance matrix ¥ = G+jB, in our per-unit system.
Collectively, these equations describe a set of Ng = 2 n
fundamental nonlinear mathematical relationships governing
the behavior of the power system, which can be compactly
represented as a function £ ().

() :RY x RM — RNE
h(x,y)=0 (6)
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In addition to the AC-PF equations, an effective model
must incorporate the generation capacities and operational
limits of the system, such as transmission line limitations.
If Pj; and Qji are the active and reactive power flowing from
bus i to bus k over a specific line, then the following equations
can be used to calculate them:

ik = vivk (gik cos 8 + by sin 8ix) — v gi @)
qik = Vivk (8ik Sin8jx — b cos dj) + V% (bik - b,sl? ) 8)

Here, bf}j is the shunt susceptance of the line connecting
bus i to bus k, and the apparent power flow is constrained to
remain within line ratings established by specific values |sj|.
Note that the inequality constraints in optimal power flow
models can also be expressed in terms of current; however,
have chosen to express them in terms of power flow for
simplicity and consistency with the previous equations.

m <5l Vey €& )

Specifically, these constraints can be represented as a
compact inequality described by g (-).

g () R¥ x RM — RM
gx,y) =0 (10)

Finally, it is also assumed that the physical characteristics
and technical specifications impose lower and upper bounds
on the individual variables of the system state for all nodes,
such as generation and voltage limits.

y=y=y Y

Known values, such as the reference angle, are also taken
into account by utilizing the same value for both bounds; for
example, 0 < §; < 0.

lll. PHYSICS-INFORMED NEURAL NETWORK FOR
REGRESSION

In this section, we present a physics-informed neural network
(PINN) model M, that combines a feedforward neural
network architecture with parameters w € €2, consisting
of weights and biases, a set of physical constraints, and is
trained using carefully chosen hyperparameters § € ® and
regularization techniques, so that it approximates the optimal
power flow operator (-), which brings any input power
demand to the AC-OPF solution.

A. FORWARD REGRESSOR

In regression techniques, the sophisticated relationship given
by ¥ (-) can be approximated by the operations of a neural
network, treating x as the input and the optimal values of y
as the output of a feedforward neural network (FNN) model,
as in Fig. 2, with L — 1 hidden layers, each consisting
of N; neurons, [ = 0,1,...,L, from N9 = N, until
Np = N,. During forward propagation, the input vector
x = al% is transformed into a series of weighted outputs
71l through the application of weights w!!l and biases plll
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FIGURE 1. Flowchart of the physics-informed neural network training
model operations model. The model combines a feedforward neural
network architecture with parameters w ¢ @, physical constraints, and
carefully chosen hyperparameters 9 € © to approximate the optimal
power flow operator v (-). The training process involves minimizing the
distance between the predicted output and the ground data,
incorporating data-driven and physics-informed loss terms. The optimizer
updates the weights, biases, and Lagrange multipliers of the neural
network to minimize the objective function (22).

in each layer [42]. These weighted outputs are then passed
sequentially through activation functions ¢!/ to introduce
non-linearity and produce the final output vector y = F(x)
as the activation of the last layer, which is an estimate of the
optimal state.

21 = llgli=11 4 pln (12)
all = pl! (zm), I=1,...,L (13)

Therefore, for a network with 1 hidden layer, the Forward
Regressor (Fig. 1) is based on the operator F(-).

F(x) = ¢! (w[z] gl (w[ll,x+b[l])+b[2]) (14)

The voltage and power bounds are typically non-negotiable
and must be satisfied for the power system to operate safely
and reliably. Therefore, these bounds are treated as hard
constraints and are included in the output activation function
of the artificial neural network. In fact, the output activation
function is responsible for transforming the output data of
the last layer of neurons in the network into a format that
is appropriate for the problem being solved. To ensure that
the output data falls within the allowed bounds, ¢!L1(-) must
be carefully selected during the design of the artificial neural
network.

Effective regularization plays a pivotal role in training
neural networks that can generalize well to unseen data [43].
To achieve this, careful consideration must be given to the
selection of y and y. These bounds define the permissible
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Input Hidden Output

layer layer layer

FIGURE 2. Schematic representation of a Feedforward Neural Network
(FNN) architecture and associated activations al'l, consisting of an input
layer with N neurons where x = al%, a hidden IaYer with Np, neurons,
and an output layer with N; neurons where y = 2],

range of target values for the network during training.
If the chosen bounds are too wide or excessively large, the
network can encounter numerical instability and difficulty
in converging to an optimal solution. This can make it
challenging for the PINN learning algorithm to navigate and
make precise updates to the model parameters, resulting in
poor regularization. To address this issue, it is necessary to
accurately capture the range [y, y_] within a compact and
minimal space that appropriately encompass the plausible
range of target values expected in the problem domain,
without extreme or unrealistic values.

Since the grid state variables are often subject to different
bounds, they are treated as boundary constraints, and a
vector-valued bounded activation function must be used,
consisting of distinct Ny, components for each output variable.

yi < o (zE”) <y, VdHeRvVi=1,...,N, (15

In a neural network, it is crucial to include non-linear
activation functions within the hidden layers [44], [45].
The reason for this is that linear functions cannot capture
complex patterns and relationships within the data. Non-
linear activation functions introduce non-linearity to the
network, enabling it to learn and model these complex
patterns.

The best choice for the activation function in the hidden
layer is the modified sigmoid or the Swish function, which
have been shown to outperform other activation functions for
deep neural networks [46], [47], [48], [49], [50].

For the output layer, a linear activation function is often
used. This is because regression problems involve predicting
a continuous value, and a linear activation function allows
the network to output any real number as its prediction.
Nevertheless, in our problem, the output values are bounded
by a known range, then, it is proposed that a scaled sigmoid or
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hyperbolic tangent might be the preferred option to consider
to ensure the variables lie within the specified values.

B. OBJECTIVE FUNCTION BLOCK

To train the PINN model, we use a supervised learning
approach to minimize the distance between the predicted
output and the ground truth data, where we minimize a loss
function to improve the accuracy of its predictions [51].
A data-driven loss term Ly measures the error between the
predicted and true output values, obtained from the AC-OPF
Operator (Fig. 1), while a physics-informed loss term L¢
enforces the constraints imposed by the underlying physics
of the problem being solved. By combining these two terms,
we ensure that the network learns both the data and the
underlying physics, leading to more accurate and robust
predictions.

1) EMPIRICAL ERROR

Selecting an appropriate data-driven loss function is critical
to a model’s behavior and its ability to generalize to
new data. However, there is no standardized loss function
for physics-informed supervised neural network training in
power systems, with researchers often choosing different
functions based on their specific problem requirements and
preferences.

Power system data is prone to noise and uncertainty from
various sources, including sensor errors, communication
delays, and environmental factors [52], [53]. This can result
in imprecise data that is difficult to accurately model and
predict, especially when dealing with variables such as
Optimal Power Flow (OPF). To address this, it is crucial to
select a loss function that is robust to noise and can handle
outliers in the data. The Mean Absolute Error (MAE) is the
preferred choice in such situations, as it considers the absolute
magnitude of errors rather than their squared values [54].
In this case, using MAE can help to regularize the model and
ensure better performance, even with limited or noisy training
data. The function is shown next:

Ny
A | < .
Lo y) = = 2 i =il (16)
Y=l

2) REGULARIZATION

Regularization techniques are essential for preventing over-
fitting or high variance during ANN training [55]. L1
regularization, also known as Lasso regression, promotes
sparsity in weight matrices, leading to simpler models and
better generalization performance [56]. L2 regularization,
also known as Ridge regression, encourages small values in
weight matrices, effectively minimizing the risk of overfitting
by reducing the magnitude of weights [57]. These techniques
are particularly useful in scenarios where the data is noisy or
contains other sources of variability (Fig. 3). To implement
these techniques, a regularization term, denoted by Lg,
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FIGURE 3. Effect of L1 and L2 regularization on regression results in
neural network time series predictions [58].

is added to the loss function.

L L
1
Lryy = 2w =D">" wll] (17)
=1 =1 ij
L L
l
Lryy =2 1wl =>">"will2 (18)
=1 =1 ij

To determine the impact of regularization on the model,
it is crucial to evaluate its contribution. Choosing either L1
or L2 regularization, or a weighted combination of the two
requires exploration to strike the right balance between the
model’s simplicity and the accuracy of its predictions.

3) AUGMENTED LAGRANGIAN PENALTY

It is worth noting that in the literature, there is often mention
of the use of feasibility mapping or projection methods
to incorporate physical constraints into the loss function.
However, in practice, the application of these approaches to
machine learning solutions typically involves approximations
of the problem or, if not combined with penalty methods,
iterative schemes that minimize the projection distance,
which can complicate the problem with additional conflicting
goals and increase computational complexity unnecessarily.
In contrast, in practice, stochastic gradient descent (SGD)-
like schemes can often reach better solutions with fewer
iterations.

To effectively address the satisfaction of physical con-
straints while avoiding unnecessary computational complex-
ity, a Lagrangian-based approach is a powerful strategy that
can be utilized. By incorporating prior knowledge about
the problem into the loss function, we can constrain the
solution space and guide the model towards more physically
meaningful solutions [59], [60].

In particular, we propose an augmented Lagrangian penalty
method that involves adding a penalty term to penalize
soft constraint violations and iteratively making the weights
and biases produce feasible predictions. This method can
achieve a high solution optimality and constraint compliance,
even in real-time [61]. To compute its value, it is important
to consider the type of each constraint to use vy, Vg,
whether it is equality or inequality. This can be achieved by
utilizing the following equations, where the operators (-)? and
(max{- })2 are applied element-wise and are chosen to enforce
differentiability.

hx,y) = 0 = v(x, §) = (h(x,$))° (19)
g(x,y) < 0 = v,(x,§) = (max{0, g(x,5)})°  (20)
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FIGURE 4. Schematic representation of the distance, in a dashed line,
between the point y predicted by a PINN, and the region F determined by
the physical constraints.

The constraint violations are introduced into the loss function
using Lagrange multipliers A € RVE, i € RM to capture the
penalty that leads to more stable training, which is a measure
of the distance between the predicted point and the feasible
region defined by the physical constraints (Fig. 4).

L@ 9) = AT vy, )+ p’ v, 3) (2D

4) BALANCE FACTORS

To design neural networks with multiple objective func-
tions, we use the multi-objective optimization technique
called multi-objective backpropagation (MOBP). MOBP is
a variation of the traditional backpropagation algorithm that
is designed to optimize multiple objectives simultaneously;
such as the empirical loss and the constraints violation. This
algorithm involves computing the gradients of each objective
separately and then using a weighted combination of these
gradients to update the network weights.

To apply MOBP, the different factors of the objective
function are weighted by hyperparameters that balance the
terms in the loss function, and they must be tuned to optimize
the PINN’s performance. In particular, a penalty factor «
and a regularization rate y are used. Additionally, due to the
dependency y = F(x), we simplify our notation.

Lx,y) = Loy, F) +a - Loy, FO) +y - Lr
(22)

When setting the parameters of the augmented Lagrangian
penalty in Equation (22), it is essential to determine suitable
values for the penalty factor o, and the regularization
rate y. The o parameter is system-specific and plays a
crucial role in balancing the trade-off between minimizing
the empirical error and penalizing constraint violations
during the model’s learning process. Detailed explanations
of hyperparameter tuning for alpha are provided in the
Methodology (Section IV), where we outline the process for
systematically determining the optimal values tailored to each
specific system under consideration.

On the other hand, the y parameter represents the regular-
ization strength and controls the impact of regularization on
the model’s training process. Unlike «, its values are fixed
and remain invariant across different systems. These optimal
values are determined through extensive experimentation and
analysis presented in the Results (Section V), constituting one
of the key contributions of this paper.
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C. OPTIMIZER

The Optimizer block in 1 is responsible for updating the
weights, biases, and Lagrange multipliers of a neural network
during the training process (Fig. 1). It achieves this by
minimizing the objective function with a learning rate 7,
which is a hyperparameter that requires careful selection.
At every learning step ¢, the optimizer computes the update
on the network’s parameter w, with value w; that is required
to minimize the objective function, based on the current
input/output pairs (x;, y,).

w1 = wr +D (wt’ L(x,,yt)) (23)

Several algorithms can be used for optimization, with
stochastic gradient descent (SGD) being the most popular.
SGD computes the gradient of the loss function for each
data point in the training set and updates the network
parameters by taking a step in the opposite direction of
the gradient to minimize the loss. However, it may lead to
convergence issues or unstable behavior for some learning
rates 1. To address these issues, the variant Adaptive Moment
Estimation (Adam) was proposed, which has been shown
to converge faster and achieve better performance with the
original hyperparameters 81 = 0.9, f2 = 0.999, ¢ = 1078
[62], and an exponential learning rate decay, which helps to
speed up the convergence and makes the Adam optimizer
more stable and less sensitive to fluctuations in the gradients.

e =no - £11% (24)

Every particular parameter w has first and second moment
estimates m,,, v, which are updated at each training step by
receiving the current values for the loss function (Fig. 1), and
are used to update the network’s parameter,

ma)(t) = ,Blmw(t - 1) + (1 - ﬂl)vw):‘(xtvyt)
(25)

Vo) = Bave(t —D+(1—B2) (Vo l(xr,y,)’

10} | 1- 85
> D ((1), L(xtvyt)) = _77t : :n_(;)t ' v (t) f‘2€ (26)
1 w

where 7; is the learning rate at step 7.

Adam is particularly well-suited for training large neural
networks with large datasets, as it requires relatively little
memory compared to other stochastic optimization algo-
rithms. It is used for both the neural network and the Lagrange
multipliers. However, the learning rate stepsize for updating
the Lagrange multipliers is weighted by «, depending on the
relative importance of the constraints. Therefore, a criterion
for selecting optimal hyperparameters is necessary.

IV. METHODOLOGY

A. DATA COLLECTION

1) GENERATION OF INPUTS

We collected a diverse set of training data by varying the

parameters of several power system scenarios, listed in
Table 1.
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TABLE 1. Description of power system scenarios used to test PINN's
performance to predict AC-OPF solutions with their corresponding
number of buses n, generators ng, and lines n;.

[ Scenario [ n  ng  ng [ Description |

A 5 5 6 PIM 5-bus system [63]
B 9 3 9 9-bus system [64]

C 14 5 20 IEEE 14-bus test [65]
D 22 1 21 22-bus RDS [66]

E 30 6 41 IEEE 30-bus test [67]
F 39 10 46 NE 39-bus system [68]
G 69 1 68 69-bus RDS [69]

H 70 2 78 70-bus system [70]

1 74 1 73 74-bus RDS [71]

J 94 1 93 Portugal 94-bus RDS [72]
K 118 54 186 | IEEE 118-bus test [73]
L 141 1 140 | 141-bus RDS [74]

For each scenario i € A,...,L, we kept its grid
topology and admittances as constant parameters; and
generated diverse inputs to create Ng random sample cases.
To accomplish this, we used a random uniform distribution
to generate each input x} forthe casej e 1,2, ..., Ng, based

on the original input vector x' € RNo. The range of the input
values was set from 0% to 200%, allowing for considerable
fluctuations in power demand and generation, thus enhancing
the model’s ability to generalize and more accurately predict
new data.

In particular, these scenarios optimize their states to
minimize a quadratic cost function parametrized by the
diagonal matrix of costs [C ] obtained from the vector c.

nG
fo)y=p*"-[C]-pt =D ci-pf? 27

i=1
Therefore, the input vectors x! contain active and reactive
power demands in the buses (p¢, g¢), as well as the costs of
the objective function ¢. However, the objective function is a
choice of the particular problem in question, and the proposed
PINN methodology applies to any user-defined objective

function and a set of input parameters.

2) ACCURATE AC-OPF SOLUTIONS

To obtain accurate and precise solutions for AC OPF
problems, we applied the TPOPT interior point solver [75].
It is a nonlinear optimization technique that iteratively solves
a sequence of linearized subproblems to move towards the
optimal solution while satisfying the constraints on the power
system, known for its ability to provide more accurate
and precise solutions than the quasi-Newton or linear-
programming solvers for this type of problems, even though it
can be computationally expensive. In particular, we adjusted
the solver parameters to improve the accuracy and precision
of the solution at the cost of increasing the computation cost,
with convergence tolerance for optimization ¢ = 10712,
maximum number of iterations 10°, and computing the exact
Hessian matrix of the Lagrangian at every step, rather than
an approximation. The maximum number of iterations was

135920

chosen by monitoring the solver solution during its run for
the original case of each one of the presented scenarios and
setting the minimum number of iterations that ensure that
the objective function was minimized to the desired level of
accuracy.

The solution of this solver y! is the vector of optimal
values of the output variables that satisfy the constraints on
the power system that we want the PINN model to predict.
Hence, the PINN will try to approximate the behavior of these

solutions by using the pairs of input-output data D = (le y;)

yi =) (28)

B. PINN TRAINING

We train the PINN using a set of hyperparameters 2 =
(n, N, @). To improve the consistency of the results, the
decay parameter £ was explored as an additional hyperpa-
rameter to tune. However, it was observed that the variation
between different cross-validation tests was greater than the
variation between cases with different & values. Since values
of & around 0.97 consistently produced good results and the
focus of this study was on other hyperparameters, it was
deemed unnecessary to explore further variations in £ and
fixed to this value.

We include the set of physical equality and inequality
constraints in the computation of the loss function terms. The
network architecture consists of a single hidden layer with
Ny, neurons, L = 2, and a scaled sigmoid output activation
function, which takes into account the output variable’s
bounds.

oM@ =0 = 1 (29)
l+e*

D) =y+(F-y) o y%) (30)

We choose a single hidden layer because it has been shown
to provide satisfactory results for a variety of problems, while
also being computationally efficient [76], which will help us
determine the validation of the proposed methodology.

The input to the network is the vector x, and the output
is the predicted value y of the solution y = tr(x) at that
point. Those values are drawn from a dataset D previously
generated, which contains 1000 pairs (x,y) for a specific
scenario.

We train the network using the Adam optimizer with a
learning rate of n and a batch size of 800 pairs randomly
chosen to form the training dataset D7. During training,
we evaluate the network performance on a validation set every
100 iterations, and stop training if the validation loss does not
improve for 100 consecutive evaluations. We use the mean
absolute error loss to compute the empirical loss term, and
the violation of the physical constraints is computed using the
sum of the constraint violation terms described in the PINN
Lagrangian Penalty step.
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C. PERFORMANCE EVALUATION

1) REGRESSION USING PINN

Given a set of hyperparameters ® and a training dataset Dy,
we train our PINN for a specific arbitrary scenario and want to
evaluate its performance in (1) learning to predict the optimal
power flow state and (2) serving as a warm start method for
optimization.

Once training is complete, we evaluate the trained PINN
on a test set of 200 data samples that were not used during
training or validation, by setting the learning rate n = 0.
We are not interested in a singular case minimum error, but
rather an overall good performance of our estimator. For this
reason, the minimum error metric is not desired, but rather
an average of the results from the validation dataset Dy .
We compare the predicted values with the true values of
the test set along with the physical constraints violation and
compute the average of the loss functions L(x, y) to determine
the error of this PINN with Dy and hyperparameters ®.

1

L[Dy, 0] =
[Dy, ©] Dy

> Lippeixy) (3D

(x,y)€Dy

The error can be split into two terms to indicate the result
of the validation and testing.

L[Dy, O] = Lo[Dy, Ol +a - Lc[Dy, O] (32)

2) WARM-START OPTIMIZATION

We conducted a series of experiments to evaluate the per-
formance of the proposed warm start optimization approach
PINN. The experiments compared the standard initialization
approach against the warm start obtained from the PINN
model by measuring several metrics.

At each iteration 7, we fed the input x; to both the AC-OPF
operator and the PINN’s forward regressor. The PINN’s
forward regressor used the weights, biases, and activation
functions to generate an estimated output y, which served as
a warm start-point for the AC-OPF operator.

We then performed a second computation at the AC-OPF
operator by setting the voltage magnitudes to v; = 1 and
initializing the phase angles to §; = 0 Vi € N. Additionally,
we set the real and reactive power injections pf and qf
Vi € G to their corresponding values obtained from
Equations (4)-(5). This served as the starting point to reach
the objective y, from the direct input x; and also enabled us
to update the PINN model with the proposed learning rules.

If additional requirements, restrictions, or variable bounds
were needed, the PINN was updated accordingly by modify-
ingy,y, g, or h at each time step.

We compared the average computational time using the
PINN model 7p against the standard solution Zg using the inte-
rior point method for different scenarios. The computational
time of the interior point method without the PINN warm start
was used as the baseline.

Furthermore, we analyzed the performance of the AC-OPF
solver by measuring the success rate rg and rp of the
optimization method, which indicated the percentage of times
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the optimization algorithm was able to find a feasible and
optimal solution. The success rate was calculated for both
the standard initialization approach and the PINN warm start
approach.

To assess the effectiveness of the optimization ensemble,
which combined the PINN predictions with the interior point
method to warm start the optimization process, we measured
the difference in the score of the objective function achieved
in both cases Af, as there could be multiple minima.

All these evaluation metrics were carefully chosen to
provide a comprehensive and accurate analysis of the
performance of the proposed warm start optimization
approach. This AC-OPF operation was performed simulating
areal-time situation where inputs x; are received one at a time
for each scenario of our power grid system model.

D. HYPERPARAMETER TUNING
To achieve the best performance of our physics-informed
neural network (PINN), we need to carefully tune its
hyperparameters. In particular, we need to balance the
empirical loss (which measures the discrepancy between the
predicted and true solution) with the constraint violation
(which enforces the physical laws). A higher hyperparameter
value o would increase the influence of the constraint
violation term, minimizing violations while maintaining a
low empirical loss. However, we must avoid selecting an
excessively high value of «, which would cause the PINN
to lose its generalizability. In such cases, the empirical loss
would persistently increase even as the constraint violation
diminishes with continued training.

We propose a four-step procedure to tune the hyperparam-
eters of our PINN for a specific scenario, and examine the
behavior of the PINN with their variation:

1) PROMISING CONFIGURATIONS

We first perform a random search to explore the hyperparam-
eter search space n € [1078,10] ¢ R, N, € [1,100] C
N. The goal is to identify regions that minimize the loss
function for the learning rate and the number of hidden
neurons while fixing « = 1, a reasonable starting point
for most PINN models. We use Latin Hypercube Sampling
(LHS) with 10 strata to generate hyperparameter values that
cover the entire range of values while ensuring a uniform
random distribution of samples and use fewer iterations than
an exhaustive search with every possible combination of
hyperparameters [77]. After generating samples using LHS,
we then generated a preprocessed dataset containing the
cross-validated average score of 10 random samplings of the
data collection of size Ny = 1000, with a splitting of 80%
for the training set and 20% for the validation set, for every
combination.

To identify areas where the loss function values are
consistently low and narrow down the search space, we have
successfully combined multiple approaches to tackle the
problem. Then, we visualized the results of the random search
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FIGURE 5. Scheme of physics-informed neural network hyperparameters
tuning for a particular power systems scenario. Four-step procedure
proposed for tuning the hyperparameters of a physics-informed neural
network (PINN) is tailored to a specific power systems scenario.

It involves exploring the hyperparameter search space using random
search and Latin Hypercube Sampling (LHS) to identify promising
configurations, followed by a focused grid search to determine stable
learning regions. Optimal configurations are then identified by
minimizing the combined loss function, comprising both empirical and
constraint violation terms (35). Finally, the PINN model is evaluated on a
separate validation dataset to ensure generalizability.

using heatmaps, and also looked at the specific combinations
with the lowest loss function value to validate that they
belong to promising regions of learning rate R, C RT,
and hidden nodes Ry C N. Then, to validate and refine
the results, we apply a k-means clustering algorithm with
the Silhouette method to group the combinations based on
their loss function values, resulting in a set of clusters in the
search space with similar loss function values [78]. This is
useful to gain insights into this complex dataset that may
not be apparent through manual examination. We then use
these clusters to identify the region of interest with the lowest
average loss function.

2) STABLE LEARNING REGION

Based on the results of the random search, we perform
an exhaustive grid search for the penalty factor ¢ €
[1078,10], which plays a crucial role in balancing the
physical constraints and the empirical loss function in the
physics-informed neural network. We focus on the best
combination of hyperparameters (1, Nj) identified in the
previous step and search locally around it to identify the stable
learning region R, C R of a. To compute the stable
learning region, we analyze the intersection of the o regions
of robust learning for the empirical error (ng) and for the
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constraint violation (Ry), as identified in the simulations
results.

3) OPTIMAL CONFIGURATION

Given the potential optimal range for « obtained from
Univariate Search (Fig. 5), we perform a local grid search
in R = R, x Ry x Ry to identify the hyperparameters
that minimize the whole loss function, comprising both the
empirical and constraint violation terms, with normalized
values Lo[-], L¢c[-] € [0, 1].

Lo —min{Lo}
Lo= max{Lo} — min{Lo} (33)
Le— Le — min{L¢} (34)

max{Lc} — min{Lc}

Normalizing the terms is a common practice in situations
where they have different magnitudes and units, and it
ensures that they are all on the same scale, which facilitates
comparisons and enables effective optimization and finding
the optimal hyperparameters ®* = (n*, Ny, a*).

®* = arg gli%Lo [Dy, ©]+ Lc [Dy, O] (35)
IS

4) EVALUATION

Finally, we evaluate the PINN model on a separate validation
dataset in the Evaluation block (Fig. 5) to ensure that the
model generalizes well by computing the error of normalized
values E.

E (Dy) = min Lo[Dy, O]+ Lc [Dy, O] (36)

We compute the deviation of the optimal hyperparam-
eters as the relative difference between the score for the
optimal hyperparameters against the mean score of all
the combinations obtained from equally spaced subsets of
the hyperparameter search space. By carefully tuning the
hyperparameters of our PINN using this four-step procedure,
we intend to achieve with our model the best possi-
ble performance while avoiding overfitting and numerical
instability.

This approach puts the focus on the applicability of
the hyperparameters across a wide range of cases and
made the optimization method more robust and adaptable.
The resulting optimized hyperparameters are expected to
improve the accuracy and performance of the optimization
results. In light of the hyperparameters obtained from each
step of our scheme (Fig. 5), we comprehensively analyze
and assess the impact of various components that can be
integrated into the training process of our PINN model
compared to a conventional ANN. Furthermore, we validate
the performance of the PINN in the context of warm-start
optimization.

V. RESULTS

A. REGULARIZATION IMPACT

First, to investigate the impact of the regularization term
in the loss function on the performance of the PINN,
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FIGURE 6. Comparison of training processes for the ANN model (« = 0)

of scenario E without and with L2-regularization with y =1, y =5-1075,

Np, = 20. Line plots were computed using the average of the objective
function, shown as a scatter plot, every 10 training steps.
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FIGURE 7. Comparison of training processes for the PINN model of

scenario A without and with L2-regularization with y = 1, = 1072,

Np = 25, « = 1. Line plots were computed using the average of the
objective function, shown as a scatter plot, every 10 training steps.

we experimented with different values of the regularization
factor, y for both L1 and L2. We observed that for ANNs
(Fig. 6), a moderate value of y helped prevent overfitting
and improved generalization performance. However, when
implementing PINNs (Fig. 7), we found that the regular-
ization term became irrelevant when « > 0. This is
due to the physics-informed constraints that are built into
the loss function, which inherently provide regularization
to the network. In fact, we observed that adding a large
y value to the loss function did not significantly affect
the network’s performance, and sometimes even hindered
convergence for the considered scenarios. For this reason, the
subsequent analyses have been used without including the
regularization term in the loss function to avoid unpredictable
instability and unnecessary computations, which is equivalent
to setting ¥ = 0. Fig. 7 shows the training processes where
the regularization term causes instability in the network’s
convergence.
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Moreover, as a qualitative general appreciation, only
including the regularization term y - Lg in the objective
function, and not the augmented Lagrangian penalty « - L,
helped prevent some overfitting in a few cases, but only
for hyperparameter values around the optimal ones (Fig. 5)
determined for every scenario. In contrast, just including the
term « - L is able to capture the regularization effect over a
wider range of learning rate values, as seen in Fig. 7.

This reveals that the regularization term in the loss function
becomes noise when the physics-informed constraints are
incorporated into the loss function; while the empirical results
showed that a moderate value of the regularization factor can
prevent overfitting and improve generalization performance
of artificial neural networks. The simulation results suggest
that the constraint violation in the loss function inherently
provides regularization to the network, and the regularization
term is irrelevant when implementing PINN.

B. PENALTY FACTOR ANALYSIS

In this study, we investigate the effect of varying the hyperpa-
rameter « on the performance of the physics-informed neural
network (PINN). We observe that a very low value of «
results in low empirical error but poor constraint violation
satisfaction and a high L¢ term. Intuitively, increasing o
should prioritize constraint violation in the loss function and,
after some learning iterations, reduce the L¢ term but with
a trade-off of increasing empirical error. However, we find
that for some values of o within a middle range R, typically
around 0.5, the PINN loses generalization, and empirical
loss increases significantly after only a few training steps.
Beyond a threshold value of «, the network is able to learn and
predict optimal values accurately while reducing constraint
violations and keeping the empirical loss low.

We analyze this behavior by plotting normalized error
terms with respect to several o values and identifying four
regions, in order of the parameter «.

1) Stable Overfitting: The first region corresponds to
low o values with the lowest empirical error but high
constraint violation. This suggests that the network is
overfitting to the data and not constrained enough by
the physical equations, leading to poor generalization
and inaccurate predictions.

2) Critical Balancing: The second region corresponds to
« values near the critical point. During the early stages
of training, the network prioritizes fitting the data, thus
decreasing the empirical error. However, as training
progresses, the network begins to overemphasize the
constraints, leading to an increase in the empirical error.
This behavior indicates that the network struggles to
balance the fit to the data and constraint violations.

3) Stable Learning: The stable learning region cor-
responds to « values that are slightly higher than
the lowest values with a low empirical error and
low constraint violation. This region indicates that
the network produces accurate predictions that are
consistent with the physical behavior of the system.
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FIGURE 8. Normalized empirical error and constraint violation as a
function of penalty factor « for the PINN model learning to predict values
for scenario B with y = 0, y = 3.5. 1073, and Nj, = 23. The behavior of
the model is analyzed in four different regions along the real line of «:
stable overfitting (1), critical balancing (2), stable learning (3), and
instability (4). The shaded background in both plots indicates the region
of numerical divergence where the model experiences numerical
instabilities during training.

4) Instability: The unstable region corresponds to high
o values with numerical divergence in the network
weights and biases’ updates; suggesting that the
network is unable to learn and experiencing numerical
instabilities during training.

We note that the stable learning region presents an adequate
trade-off between the conflicting objectives, and determining
the optimal trade-off point requires hyperparameter tuning
with restricted values of .

By imposing a substantial penalty factor, the PINN is
incentivized to perform a forward regression that restricts the
range of predicted values to an approximate feasible space
determined by the physical constraints of the model. The
effectiveness of this approach is demonstrated in Figure 9,
which illustrates that the PINN model exhibits a more precise
convergence in the total objective function compared to the
ANN model with no Lagrangian penalty (¢ = 0).

Hence, very low values of « result in low empirical error
but poor constraint violation satisfaction, while very high
values caused numerical divergence in the network weights
and biases’ updates. The stable learning region presents
an adequate trade-off between conflicting objectives, which
required hyperparameter tuning with restricted values of «.
Moreover, the findings indicate that hyperparameter tuning
is essential for choosing the optimal tradeoff point between
empirical error and constraint violations when using penalty
factors in the PINN.

C. OPTIMAL HYPERPARAMETERS

Using the four-step procedure outlined in Section IV (Fig. 5),
we identified the optimal hyperparameters for each scenario
and evaluated their performance.
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factor o* = 1.08 for the PINN model of scenario H with y =3 - 103, and
Np, = 14, showing the advantage of the use of PINN over ANN.
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FIGURE 10. Heatmap of loss function values obtained from random
search for scenario C. The best combinations of hyperparameters are
located in a region of the search space with a learning rate of
0.0025 < 5 < 0.75 and number of hidden nodes 1 < Nj, < 42.

Fig. 10 shows the heatmap of the loss function values
obtained from the random search for scenario C, as an
example. The heatmap shows that the best combinations of
hyperparameters are located in a region of the search space
with a learning rate of 0.0025 < n < 0.75 and number of
hidden nodes 1 < N; < 42. As it can be seen in Fig. 11,
this region corresponds to the cluster with the lowest average
loss function value, which is used to verify our results in the
methodology.

Remarkably, we found that the optimal hyperparameters
led to a significant reduction of around 85%-90% in the loss
function with respect to the average in the hyperparameter
space of the fine-tuned PINN model used for predicting
AC-OPF with physical constraints. This highlights the
effectiveness of our approach in accurately modeling the
underlying physics and constraints of the power system,
resulting in improved predictive performance.
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FIGURE 11. Clusters obtained from k-means clustering with the
Silhouette method for scenario C, and the loss function as a score. The
cluster with the lowest average loss function value (Cluster 2, highlighted
in darkest green) corresponds to the region of the search space with the
best combinations of hyperparameters.

TABLE 2. Optimal PINN hyperparameters that minimize the MAE for
several grid topologies’ OPF estimations.

Scenario n* a* N Error | Error reduction
A 0.0090 1.23 33 0.122 89.46%
B 0.0035 1.30 23 0.191 85.79%
C 0.0009 1.01 20 0.193 86.84%
D 0.0004 1.35 1 0.147 88.89%
E 0.0006 1.03 18 0.244 83.40%
F 0.0015 1.49 33 0.082 94.35%
G 0.0160 0.02 35 0.228 84.53%
H 0.0030 1.07 14 0.179 87.70%
I 0.1000 | 0.0005 1 0.104 92.64%
J 0.0011 1.37 20 0.222 84.73%
K 0.0040 1.16 23 0.094 93.97%
L 0.0155 1.4 35 0.098 93.42%

Our hyperparameter tuning results indicate that the number
of neurons in the hidden layer and the learning rate were
the most critical hyperparameters for achieving optimal
performance. In fact, we found that these hyperparameters
had a greater impact on the model’s performance than varying
the regularization coefficient «, even when o was within
the stable learning region and the hyperparameters were
within their respective regions of promising configurations.
Regularized flexible activation functions [79] were also
explored; however they did not result in any performance
gain, but rather an increase in the number of hyperparameters
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TABLE 3. Performance evaluation of the proposed warm start
optimization approach using PINN for several scenarios. At: Average
computational time gain. Ar: Success rate gain. Af: Objective function
value gain.

Scenario AT (%]  Ar[%] Af [%]
A -9.86 -1 -9.6
B -10.93 0 -0.97
C -9.42 0 -1.97
D -21.04 0 -0.25
E -16.29 +27.61 -0.71
F -30.22 +52.83 +8.58
G -20.49 +7.41 -3.13
H -43.57 +14.00 +0.16
1 -14.37 0 +0.30
J -15.81 +490.36 -1.45
K -23.39 +31.58 +1.77
L -8.64 0 -1.05

Average —18.67 51.90 —0.69

to tune, compromising the reduced complexity of the method.
This highlights the importance of careful selection and
fine-tuning of the number of neurons and learning rate for
achieving optimal performance in the PINN model.

D. WARM-START OPTIMIZATION

We compare the optimization results obtained with and with-
out the use of PINN. Specifically, we compute the percentage
improvement in optimization performance achieved by using
the PINN as a warm start compared to starting from scratch.
The higher the improvement ratio of the metrics, the more
significant the contribution of the PINN warm start.

The results of the simulations show that the Physics-
Informed Neural Network (PINN) approach achieved com-
parable results to the benchmark solution, while also offering
an average speedup of 18.7%. In fact, for case H, the
PINN achieved a maximum speedup of 43.57%, indicating
that it can reduce the computation time of AC-OPF by
almost half compared to the robust traditional solver. Notably,
the optimization algorithm’s success rate was consistently
increased or maintained, with an average increase of 51.9%.
Only in scenario A’s simulation did the success rate decrease
slightly from 100% to 99%.Furthermore, the proposed
method showcased exceptional effectiveness by significantly
enhancing the success rate of the AC-OPF computation in
case J, achieving an impressive improvement of 490.36%.
Additionally, in 8 out of the 12 cases, the objective function
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value was slightly decreased at the end of the optimization,
while it was slightly increased in the remaining 4.

The simulations conducted in this study demonstrate that
the Physics-Informed Neural Network (PINN) approach
yields comparable results to the benchmark solution, while
providing an average speedup of 18.7%. Remarkably,
for case H, the PINN achieves a substantial maximum
speedup of 43.57%, effectively reducing the computation
time of AC-OPF by nearly half compared to the robust
traditional solver. It is worth noting that the optimization
algorithm’s success rate consistently increased or remained
stable, exhibiting an average increase of 51.9%. The only
exception was observed in scenario A, where the success rate
experienced a slight decrease from 100% to 99%.

Furthermore, the proposed PINN method demonstrates
exceptional effectiveness in enhancing the success rate of
AC-OPF computation, as evident in case J, where it achieves
an impressive improvement of 490.36%. Moreover, among
the 12 cases analyzed, the objective function value slightly
decreased at the end of the optimization in 8 cases. This
outcome suggests that utilizing PINN predictions as a warm
start allows the algorithm to converge towards improved local
minima and, in some cases, even global minima.

It is important to consider alternative techniques such as
relaxations, like Second-Order Cone Programming (SOCP),
which offer a faster resolution of the problem [80].
Simulations indicate that SOCP provides an approximate
solution to the original AC-OPF problem using only around
10% of the iterations required by the original AC-OPF
formulation, resulting in a significant computational gain.
However, utilizing the SOCP solution as a warm start does
not offer any notable changes in the computational time
or the success rate, compared to not using a warm start at
all. This suggests that relaxations for optimal power flow
are highly valuable for obtaining approximate solutions with
considerable computational time savings. Nevertheless, they
prove to be less effective than the PINN approach for warm
starts to achieve precise AC-OPF solutions.

The evaluation presents evidence that the proposed PINN
method is a promising approach for warm start optimization
in power systems, as it is able to balance computational
efficiency and solution accuracy in most cases. The opti-
mization ensemble can further improve the computational
efficiency and more remarkable the convergence of classical
optimization AC-OPF algorithms, without sacrificing the
accuracy of the solution.

VI. CONCLUSION

The study investigated the impact of several factors on the
performance of physics-informed neural network for the
estimation of AC-OPF results.

Existing studies favoring warm starting often rely on the
previous operating point or an approximate solution as the
initialization, assuming its adequacy in capturing the prob-
lem’s characteristics. However, this approach overlooks the
fact that each new AC-OPF case introduces new inputs that
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slightly modify the problem. Consequently, warm-starting
with the previous operating point fails to align with the new
problem, and multiple iterations are needed to converge to
a well-centered solution. In contrast, the data yielded by
this study provides evidence that warm-start initialization
with PINN predictions is an alternative approach that not
only improves the success rate but also enhances compu-
tational speed when solving the problem in an AC-OPF
exact formulation. Therefore, it seems fair to assert that
PINN exhibits a superior performance in finding warm-start
points for exact solutions, while relaxation techniques like
SOCP primarily excel in achieving faster approximate
solutions.

Additionally, incorporating physics-informed constraints
information can improve the generalization performance. Our
results suggest that the PINN approach can significantly
improve the efficiency and success rate of the AC-OPF
optimization algorithm in power systems, compared to
starting from scratch. The PINN method can reduce the
computational time by almost half, while maintaining or
increasing the success rate and achieving results comparable
to the benchmark solution. The reduction in the value of the
objective function in most cases indicates the effectiveness
of the proposed approach. Overall, the PINN method can
enhance the scalability and computational efficiency of
optimization algorithms in power systems, leading to cost
savings and improved system performance.

Future research can explore the potential of the PINN
method for other power system optimization problems and
investigate the benefits of combining it with other machine
learning techniques. Firstly, it should be noted that in this
study we performed the optimal design of a PINN with
a shallow feedforward neural network architecture and a
single hidden layer to optimize their advantages on grid
operation, setting the groundwork for studying multiple
hidden layers and larger scale problems, and quantifying their
improvements in future analysis.

Our findings demonstrate a promising method to use
PINNs to initialize OPF, which can be applied not only
in offline simulations but also in real-time systems where
there are frequent changes. This study can contribute to
the development of more efficient and accurate optimization
algorithms for power systems, thereby improving the reliabil-
ity and sustainability of the grid.
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