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Abstract—The increasing penetration of inverter-
based resources (IBRs) is fundamentally reshaping
power system dynamics and creating new challenges
for stability assessment. Data-driven approaches, and
in particular machine learning models, require large
and representative datasets that capture how system
stability varies across a wide range of operating
conditions and control settings. This paper presents an
open-source, high-performance computing framework
for the systematic generation of such datasets. The
proposed tool defines a scalable operating space for
large-scale power systems, explores it through an
adaptive sampling strategy guided by sensitivity anal-
ysis, and performs small-signal stability assessments
to populate a high-information-content dataset. The
framework efficiently targets regions near the stability
margin while maintaining broad coverage of feasible
operating conditions. The workflow is fully imple-
mented in Python and designed for parallel execution.
The resulting tool enables the creation of high-quality
datasets that support data-driven stability studies in
modern power systems with high IBR penetration.

Index Terms—Data generation, High-performance
computing, Small-signal stability, Power System
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I. INTRODUCTION

The ongoing energy transition involves the pro-
gressive phase-out of fossil-fuel-based Synchronous
Generators (SGs), the large-scale integration of re-
newable Inverter-Based Resources (IBRs), and the
increasing electrification of demand. As a conse-
quence, power systems are evolving into power-
electronics-dominated systems. In these systems,
electromagnetic phenomena become increasingly
relevant in shaping the overall dynamic behavior,
complementing and in some cases influencing more
strongly the traditional electromechanical dynamics
that characterize grids dominated by SGs [1]. These
phenomena appear on distinct time scales: elec-
tromechanical dynamics evolve relatively slowly,
typically over seconds, whereas electromagnetic
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dynamics occur on the order of microseconds due
to the high switching frequencies and fast control
loops of power electronic converters [1]. As a
consequence, modern electrical networks are in-
creasingly exposed to fast and potentially poorly
damped oscillations that require rapid detection and
mitigation. Predicting these events in advance is
particularly challenging because of the intermittent
and volatile nature of renewable energy sources. To
address these new operational challenges, Transmis-
sion System Operators (TSOs) are acting both on
the monitoring side and on the stability detection
and assessment side. On the monitoring side, they
are equipping their networks with advanced real-
time measurement infrastructures such as Phasor
Measurement Units (PMUs) and Wide-Area Moni-
toring Systems (WAMSs) [2], [3]. On the assess-
ment side, there is growing interest in Machine
Learning (ML)-based surrogate models as alterna-
tives to conventional time-domain simulations [4].
Conventional simulations provide high accuracy but
are computationally expensive. ML-based models,
instead, offer the possibility of delivering fast stabil-
ity assessments suitable for real-time or near–real-
time operation [4].

High-quality training data are essential for the
development of ML models for power system stabil-
ity assessment. Relying solely on historical records
from system operation, such as available PMU
measurements and corresponding stability labels, is
not sufficient to train accurate models, because these
data are not fully representative of the operating
conditions of interest [4], [5]. Power systems are
traditionally operated in a conservative manner,
which means that undamped oscillations and in-
stability events are rare. Although the few events
that do occur are valuable for understanding the
mechanisms that trigger them, they are not suffi-
cient to derive statistically meaningful patterns. ML
classifiers, such as those used to predict stability
status, require balanced datasets [6] and therefore
a significant number of unstable operating points
(OPs). In addition, high-quality information in the
region of the operating space close to the stability
boundary is critical, and it has been shown to be
the most important factor for obtaining accurate

models [7].
For these reasons, historical data alone cannot

provide an adequate training dataset. They must be
enriched with synthetic instances generated through
simulation. The sampling strategy used to generate
such synthetic data should be guided by three main
principles: historical relevance, sufficient coverage
of the operating space, and discriminative relevance
to capture rare events and operating points near
the stability margin [8]. Considering historical rel-
evance, this aspect can be addressed by sampling
the operating space according to historical con-
sumption and generation patterns. The study in [9]
follows this idea by generating long-term synthetic
time series derived from historical national data,
producing realistic bus-level power injections for
ML applications. To further enhance the represen-
tativeness of historically based samples, generative
models and other data-driven techniques have been
proposed. In [10], the authors build on historical
steady-state data by using Generative Adversarial
Network (GAN)-based augmentation and transfer
learning to recreate rare operating conditions that
are underrepresented in real records. In [11], his-
torical variability is incorporated by modeling the
probability distribution of operating states under
uncertain loads and renewable production, gener-
ating samples in proportion to their likelihood of
occurrence. Although these methods significantly
improve realism, they still do not achieve sufficient
coverage of the full operating space.

To improve coverage, random sampling tech-
niques such as Monte Carlo sampling and Latin
Hypercube Sampling (LHS) are typically em-
ployed [12]. These methods, however, introduce a
major challenge: they often produce a large number
of infeasible OPs, meaning points for which the
power flow (PF) does not converge or for which the
solution cannot be used in real operation because it
does not satisfy static stability constraints, such as
maintaining voltages within acceptable ranges, or
because it violates operational limits of generators
and transmission lines. The issue of feasibility in
sampled OPs is addressed in the studies in [8], [13].
In [13], the authors formulate infeasibility certifi-
cates based on separating hyperplanes to classify
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regions of the operating space as infeasible and ex-
clude them from sampling. This removes large por-
tions of the search space and improves scalability,
but may also eliminate feasible OPs. The remaining
unclassified space is then explored using directed
walks to identify the stability margin, followed by
sampling from a multivariate distribution fitted to
the secure points. Although directed walks initiated
from multiple starting points can be parallelized, the
overall workflow still follows a fixed sequence of
steps: space reduction, directed walks, and sampling
in the stability margin. In [8], [14], a power-system
adaptation of the split-based GAPSPLIT strategy
is proposed. Although modifications are introduced
to prevent the algorithm from getting trapped in
infeasible regions, the method fundamentally relies
on recursively bisecting the input domain. As a re-
sult, it remains fully sequential and cannot be paral-
lelized. Moreover, existing methods do not incorpo-
rate dimensionality reduction and instead operate in
a high-dimensional space (or polytope [13]), whose
dimensionality grows exponentially with system
size. Finally, these approaches do not investigate the
impact of IBRs, whose presence can significantly
jeopardize system stability.

The limitations of existing sampling approaches
highlight the need for data generation frameworks
that explicitly account for the dynamic behavior of
systems with high levels of IBRs, enhance scala-
bility by reducing the effective dimensionality of
the operating space, and exploit advances in com-
putational technologies such as high-performance
computing (HPC) and parallelization. This paper
addresses these gaps through the following main
contributions:

• A data generation framework tailored to power
systems with high IBRs penetration is intro-
duced. The tool is designed to capture how sys-
tem dynamics evolve under varying penetra-
tion levels of grid-forming and grid-following
IBRs, as well as under different controller
tuning settings.

• A systematic methodology for operating-space
design is presented, addressing the challenge
of high dimensionality by defining how rel-
evant dimensions are selected and structured,

thereby enhancing scalability while preserving
system complexity.

• An efficient exploration strategy for operating-
space sampling is developed. This strategy
incorporates mechanisms to identify and pri-
oritize regions with high information content,
specifically those near the stability margin. It
also includes an online sensitivity analysis that
identifies the most influential dimensions and
steers adaptive sampling accordingly.

• A workflow optimized for HPC environments
is provided, enabling effective parallelization
and efficient execution of large-scale data gen-
eration and stability analysis tasks.

• A plug-and-play, open-source tool is released,
fully implemented in Python and available at
https://github.com/MauroGarciaLorenzo/datagen.

The remainder of the paper is organized as follows.
Section II presents the proposed data generation
tool. Section III applies the tool to a case study
and evaluates its performance under different pa-
rameter settings. Finally, conclusions are drawn in
Section IV.

II. DATA GENERATION TOOL

This section describes the proposed data genera-
tion tool, including the input information it requires,
how this information is processed, the workflow
of the data generation procedure, and the charac-
teristics of the resulting dataset. The main inputs,
outputs, and processing steps are summarized in
Fig.1. The required inputs include the system infor-
mation for which the data must be generated, such
as generation data, demand profiles, and the grid
topology. These inputs can be provided in tabular
form (as Excel files), while the network topology
can also be supplied through standard RAW files.
A detailed description of the input quantities is
provided in Section II-A. Based on these inputs,
the system’s range of operation is identified and
translated into the operating space to be explored.
To ensure a scalable exploration of this space,
the methodology used to define its dimensions is
presented in Section II-B. The operating space is
then explored through an iterative data generation
process. In each iteration, relevant quantities related



4

Sampled Data

Control 
parameters

Operating
point

Python
DataFrame

Small-signal analysis

Power
flow

Eigenvalues
analysis

.raw (PSS/E)

Grid 
topology

Loads
info

Excel

Generators
info

Excel

System Info

Excel

Control 
parameters

Space definition
and exploratiom

System Setup

Operational
range

Excel

.csv

Data
Set

Store data

Fig. 1: Data generation tool workflow.

to the operating points and controller settings are
sampled, and a small-signal stability analysis is
performed. Both the sampled variables and the
quantities computed during the stability analysis
are stored to build the final dataset, which can
be exported as a tabular CSV file. The results of
each iteration are also processed internally to drive
the exploration toward the stability margin, thereby
increasing the efficiency and information content of
the generated dataset.

A. System Setup for Dynamic Studies

Prior to initiating the data generation process,
it is essential to establish the configuration of the
system under analysis. This involves two key steps:
(i) defining the system’s operational range and (ii)
identifying an appropriate aggregation of generators
for dynamic analysis. The methodology proposed to
perform these tasks is detailed below.

1) Range of Operation: Determining the oper-
ational range is essential to define the boundaries
of the operational space that the data generation
process must explore. This step involves specifying
the lower and upper operation limits for each in-
dividual generator and load within the system. The

level of detail that can be achieved in this phase
depends significantly on the availability of system
information. Nonetheless, it is generally reasonable
to assume that a minimum dataset includes the
following elements:

a) Generation-related information:
• The bus to which each generator is connected;
• The installed capacity of each generator, ex-

pressed in terms of rated and nominal power;
• The minimum and maximum active and reac-

tive power output, defined either by applicable
grid codes or by the generator’s specific capa-
bility curve;

• The generation technology type (e.g., fossil-
based, nuclear, hydroelectric, photovoltaic,
wind), to determine whether the unit should
be modeled as a SG or an IBR.

If the analysis aims to assess the impact of different
asset control schemes and settings, it is assumed
that the control strategies and configurations to
be tested are known. For each control parameter
intended to be varied, a reasonable range is then
established based on grid codes or control design
principles.

b) Load-related information:
• The bus to which each load is connected;
• Historical load profiles, either disaggregated

by individual loads or aggregated by system
regions;

• The share of total system demand attributed to
each load.

The aforementioned information is processed and
organized into a structured table, which serves as
input to the data generation tool for modeling the
operational space to be explored. Specifically, on
the generation side, the table includes, for each bus:
the total nominal power installed; the maximum
and minimum active and reactive power that can be
injected or absorbed; and the same set of parameters
disaggregated by generator type, i.e., for the total
SG and IBR present at the bus.

2) Equivalents for dynamic studies: To conduct
dynamic studies of bulk power systems, it is nec-
essary to simplify the system modeling. In par-
ticular, representing each generator individually is
impractical; therefore, generator aggregation must
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be employed. A basic aggregation approach may
group generators based on their technology type,
such as SGs or IBRs. However, to account for the
varying control strategies applied to IBRs (primarily
grid-following (GFL) versus grid-forming (GFM)) a
different aggregation approach can be implemented,
distinguishing generators according to their control
mode. To verify the validity of this control-based
aggregation approach from a dynamic behavior per-
spective, an admittance-based frequency scan can
be used as a verification method, as shown in
Appendix A. Specifically, the conducted frequency
response scans prove that the dynamic behavior
observed by the grid remains consistent whether all
IBRs connected to a bus are modeled individually
or aggregated into a single equivalent converter,
provided they share the same control strategy. In
addition, they reveal that, for identical operating
points, the system’s dynamic response differs sig-
nificantly depending on whether the IBRs are con-
trolled in grid-forming or grid-following mode. This
observation highlights the importance of accounting
for control strategy when analyzing system stability.
It further motivates the generation of a dataset
that captures stability assessments across various
operating points and different levels of GFL/GFM
penetration, while maintaining the same overall
operating conditions.

B. Definition of the Operating Space

Once the system’s operational range is iden-
tified, the corresponding operating space can be
established and subsequently explored during the
data generation process, following the proposed
sampling strategy. The definition of the operating
space to be explored has a critical impact on both
the scalability and feasibility of the proposed data
generation process. On one hand, the space must
be sufficiently comprehensive to ensure that all
quantities required for the stability assessment of
each operating point can be appropriately sampled,
in accordance with the input specifications of the
tools employed in the stability analysis. On the
other hand, to ensure scalability, it is not practical
to define one dimension for every single quantity
to be sampled. Instead, the operating space must

M

M

~

Fig. 2: Dimensions and variables of the operating
space.

be structured to meet the sampling requirements
while minimizing the number of dimensions. In
terms of feasibility, it is essential to account for the
underlying relationships between the variables to be
sampled. Ignoring these relationships and applying
purely random sampling across all variables would
result in a large number of infeasible operating
points, making the exploration of the space un-
manageable. To address these challenges, the oper-
ating space is represented using a set of selected
dimensions and associated variables. Below, we
provide a formal definition of the identified types
of dimensions and variables, along with a clear
specification of the quantities they represent. The
overall structure is summarized in Figure 2.

Definition 1. (Independent Dimensions) Indepen-
dent Dimensions are system-level variables that can
be sampled independently.

They represent key quantities, such as total power
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generation by technology type, voltage profiles, and
control settings, that can be freely varied to generate
operating scenarios. Specifically, on the generation
side, the primary quantity to be sampled is the
total power injected into the grid. This dimension
can be decomposed into two separate components:
the total active power injected by SGs (PSG) and
IBRs (PIBR), whose sum equals the total system
generation. Since generators are modeled as PV
nodes in the power flow analysis, their voltage
setpoints must also be sampled. This corresponds
to including the grid voltage profile (Ṽ) as an
additional dimension of the operating space. On
the control side, if multiple control schemes or
modes are being analyzed, further dimensions must
be introduced. These include: the share of power
injected by IBRs operating under a specific control
strategy (e.g., GFM (%PGFM )), and one indepen-
dent variable for each controller parameter selected
for variation (k1,...,kn).

Definition 2. (Dependent Dimension) The depen-
dent dimensions refer to system-level quantities
whose value cannot be sampled independently, but
it depends on those sampled for the independent
dimensions.

A key example is the total power demand (PD),
which must be consistent with the total generation.
To account for system losses, the total demand
can be set as a fraction of the total generation,
calculated as the sum of the sampled active power
contributions from SGs and IBRs.

Definition 3. (Independent Variables) Variables
are the quantities assigned to individual system
elements (e.g., generators, loads) based on the
values sampled from the corresponding independent
or dependent dimensions. They disaggregate the
aggregated quantities defined by the dimensions and
are used to construct detailed operating points for
simulation and analysis.

The variables associated with the independent
dimensions serve to distribute the sampled quanti-
ties across individual generators. Specifically, they
determine the power to be injected by each SG
(PSGi∀i ∈ S , where S is the set of SGs), by

each IBR, and by each IBR operating under the
same control strategy defined in the corresponding
dimension (PIBRi and PGFMi ∀i ∈ C, where C is
the set of converters in the system).
Concerning the dependent dimension PD, its as-
sociated variables are responsible for distributing
the total load across individual loads (PLi

∀i ∈ L,
where L is the set of loads in the system).

Definition 4. (Dependent Variables)
Dependent variables are quantities that result from
disaggregating values sampled in the dimensions,
whose assignment is determined by the values of
other independent variables. They cannot be in-
dependently sampled and are instead derived to
maintain consistency within the defined operating
point.

Specifically, they include the power injected by
each IBR that operates under a control strategy
different from the one explicitly sampled (e.g.,
grid-following (PGFLi

∀i ∈ C)). These values are
determined as the difference between the total IBR
power and the portion allocated to IBRs operating
in GFM mode, computed on a generator-unit basis.

C. Space Exploration Workflow

The exploration begins with the definition of the
operating space, followed by an iterative process
that comprises five main steps: (i) dividing the
space into subregions, (ii) sampling operating points
within each subregion, (iii) assessing the stability of
the sampled points, (iv) performing entropy analysis
in each subregion, and (v) conducting sensitiv-
ity analysis to guide further space division. The
exploratory algorithm is illustrated by Figure 3.
This process continues until a predefined stopping
criterion is met.

The stability assessment is performed using con-
ventional small-signal stability analysis tools, as
described in Appendix B. Specifically, this step
involves:

• Computing the feasible power flow solution
(through an optimal power flow (OPF)) for
each sampled OP, which allows determining
OP quantities not explicitly set during sam-
pling (e.g., bus voltage phase angles) and ad-
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justing the sampled quantities to values that
ensure PF feasibility;

• evaluating the stability of each operating point.

The recursive subdivision of subregions aims to
increase the exploration granularity, but only within
areas of the space identified as of primary im-
portance for the analysis, namely those intersected
by the system’s stability margin. To enhance the
efficiency of the exploration process, regions that do
not contribute additional information are excluded
from further sampling. This includes regions that
are identified as infeasible (i.e., OPF does not
converge — see Appendix B), or consist almost
entirely of stable or unstable points.

To determine whether a subregion should be
further divided into child subregions, thereby con-
tinuing the exploration in that area, or whether
the exploration in that subregion should instead be
stopped, criteria based on the ratio of feasible points
and on metrics that assess the diversity of stability
behavior are applied. For the latter, an entropy-
based metric is used, where entropy is computed
over the binary stability classification (stable or
unstable) of the samples contained in the subregion.
Consider that a parent subregion is subdivided into
two child subregions, each child receives the sam-
ples that were previously generated within its corre-
sponding portion of the space during the exploration
of the parent. The cutoff criteria that determine
whether subdivision and further exploration should
continue are defined as follows:

• The entropy is zero, indicating that all sampled

points within the subregion belong to a single
class (either stable or unstable), and thus no
stability margin is detected.

• The entropy decrease between two consecutive
subdivisions falls below a predefined thresh-
old, suggesting that further subdivision is un-
likely to yield significantly new information.

• Minimum feasible rate, discontinuing explo-
ration in areas where the proportion of infea-
sible cases is too high.

• A minimum tolerance is achieved, to stop di-
viding a dimension if its current range falls be-
low a specified percentage of the initial range,
to avoid exploring overly narrow regions.

• A maximum subdivision depth is reached,
serving as a safeguard to limit computational
effort.

The choice of which dimension to divide when a
subregion is split can either be fixed in advance, by
specifying the dimensions that should be explored
with greater effort, or it can be guided by a sen-
sitivity analysis that identifies the dimension along
which the stability classification shows the highest
variability. In this second case, a Random Forest
is trained using the samples generated up to that
point. The model provides an estimate of the most
important features involved in the classification
process [15], and this information is used to select
the dimensions that will be split in the next iteration
of the workflow.

D. Sampling Methods

To further enhance the variability of the sampled
instances, the sampling of dimensions and variables
can be organized in a hierarchical manner. A pre-
defined number of samples (nsamples) may first be
generated for the dimensional quantities. For each
of these dimensional samples, an additional (ncases)
number of samples may then be generated for the
associated variables. For example, nsamples values of
the dimensional quantity PSG can be drawn, and for
each of these values generate ncases combinations of
the individual generator variables PSG,i. This allows
the analysis of how stability is affected when the
same total synchronous generation participation is
maintained, but different set-point distributions are
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assigned across the generators. Building on these
considerations, the following sampling methods are
proposed for the generation of dimensional values
and their corresponding variables.

1) Independent Dimensions Sampling: The sam-
pling of dimension quantities aims to efficiently
maximize coverage of the operating space. To this
end, the Latin Hypercube Sampling (LHS) tech-
nique is applied to all independent dimensions,
except for the voltage profile (Ṽ ). The voltage
profile must be treated with a different approach
compared to the other independent dimensions.
Although the goal is to test the system’s behavior
under conditions characterized by various voltage
profiles, it is important to consider that the voltage
at each node cannot be assigned completely at
random, as the overall voltage profile of the network
is determined by physical constraints and electrical
laws governing its operation. Supporting this, it is
well known that a network tends to exhibit a natural
voltage profile that characterizes its normal operat-
ing regime. However, such information may not be
available a priori. Therefore, to reconcile random
sampling with the need to obtain realistic profiles
that reflect the system’s physical behavior, in the
absence of detailed knowledge of the conventional
voltage profile, the following approach is proposed.
A starting bus (e.g., the slack bus) is first selected
and assigned a random voltage magnitude within
the permissible operating range defined by the grid.
The remaining network is then traversed as a graph,
assigning to each neighboring bus a voltage mag-
nitude computed as the voltage of the previously
visited bus plus a random deviation bounded within
a specified range. In the case of meshed networks,
where a bus is likely to be reached through multiple
paths, its final voltage value is taken as the average
of the multiple tentative assignments.

2) Independent Variables Sampling: When sam-
pling the values of the independent variables, dif-
ferent strategies can be employed depending on
the available information and the intended goal:
whether it is to maximize coverage of the variable
space, focus on extreme values, or replicate his-
torically observed patterns. The implemented sam-
pling methods include an approach that maximizes

variance by starting each case at the lower bounds
and incrementally increasing variable values in a
shuffled order, allocating the remaining sum until
the total matches the target; if this method fails
to converge within set limits, a fallback is used
that samples from Gaussian distributions centered
at scaled means for each variable, with standard
deviations chosen to keep values within bounds, and
then proportionally adjusts the results so their sum
precisely matches the desired total.

E. HPC Application

Parallelization is organized around two task
types. The first is the subregion exploration task,
which carries out the random sampling, entropy
evaluation, grid subdivision, and recursive calls
needed to analyze the resulting child subregions.
The second is the stability assessment task, which
runs the OPF and the small-signal stability analysis
described in Appendix B. As the exploration task
calls itself and triggers the stability assessment task
at each step, the parallelization framework must
support recursive and nested execution. This is
handled through distributed agents, each capable
of launching a local runtime on its assigned node.
This produces a task dependency tree where a
small number of exploration tasks form the upper
structure, and a much larger number of stability
assessment function calls branch below (one for
each sampled OP).

III. CASE STUDY

This section demonstrates the application of the
proposed data generation tool to a power system
representative of a highly IBR-penetrated grid. The
test system is first described, after which datasets
are generated both with and without the use of the
sensitivity-driven sampling strategy. The resulting
datasets are then analyzed to assess their exploration
behavior, composition, and effectiveness through
the performance of the ML models trained on
them. It is worth noting that omitting the sensitivity
analysis results in a data generation process that
resembles the approach proposed by the authors in
earlier work [16]. Thus, while the tool presented
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in this paper is inherently better suited for large
systems and high-dimensional operating spaces, the
case study is also designed to validate the added
value of the sensitivity-based strategy, which repre-
sents one of the key novelties of this work.

The simulations are executed in a HPC envi-
ronment, specifically on the MareNostrum super-
computer at the Barcelona Supercomputing Center.
Parallelization and distributed data exploration and
generation are managed using PyCOMPSs [17], the
Python interface of the COMPSs framework [18].
PyCOMPSs relies on a distributed runtime com-
posed of multiple agents that coordinate task
scheduling and data management across the com-
puting nodes [19], enabling transparent and efficient
execution of parallel workflows in large-scale HPC
environments.

A. System Setup

The system used to test and validate the data
generation tool is the NREL 118-bus system, a
modified version of the IEEE 118-bus system char-
acterized by higher installed demand and generation
capacity compared to earlier versions. The network
is shown in Figure 4. The following subsections
present the main features of the system that are
relevant for modeling purposes within the data
generation framework. For a complete and detailed
description, the reader is referred to [20], which also
provides the full datasets describing the system.

1) Generation: The NREL 118-bus system in-
cludes 24.6 GW of installed generation capacity
and incorporates ten different power generation
technologies. In total, there are 327 generators dis-
tributed across 54 generation units (i.e., generation
buses), as illustrated in Figure 4. Of these, 17
are wind power plants and 35 are photovoltaic
solar plants. These renewable facilities represent the
IBRs in the system and account for 18.3% of the
total installed capacity. The remaining generation
capacity is based on SG technology and includes
steam turbines (ST) powered by coal, gas, and
other fuels; internal combustion engines (ICE) pow-
ered by gas; combustion turbines (CT) powered by
gas and oil; gas combined-cycle turbines (CC); as
well as hydro and biomass generators. The dataset
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Fig. 4: Scheme of the NREL 118-bus system.

provided in [20] specifies, for each generator, its
nominal power and the bus to which it is connected.
From this information, generators are aggregated by
type (SG, IBR, and total) to compute, at each bus,
the total nominal and rated power as well as the
minimum and maximum active and reactive power
injections. The rated power and injection limits
are derived from the generator capability curves;
for simplicity, all generators are assumed to follow
the same curve that sets the active power injection
larger than 20% of the rated power, and the reactive
power injection with a power factor cosφ ≥ 0.95.
Table I summarizes the calculation procedure used
to obtain each of the above quantities.

2) Demand: The system comprises 91 loads.
The dataset provided in [20] specifies, for each load,
its Load Participation Factor, i.e., the fraction of
total system demand it represents.

3) SG and IBR models for small-signal analysis:
The SG and IBR models considered in this study are
those shown in Figure 5. A detailed description of
the SG model can be found in [21]. The SG model
includes the generator, with its electrical circuits
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TABLE I

Bus Pmax
SG Pmax

IBR Pmax SSG,rated SIBR,rated Srated Pmin
SG

n = PSG,nom = PIBR,nom = Pmax
SG + Pmax

IBR =
PSG,nom

cosφ
=

PIBR,nom

cosφ
= Pnom

cosφ
=20% of SSG,rated

Pmin
IBR Pmin Qmin Qmax

=20% of SIBR
rated =20% of Srated = - Srated sinφ = Srated sinφ

represented in the dq reference frame, and a single-
mass model capturing the mechanical dynamics. It
also incorporates an exciter, a governor, and turbine
models.
The GFL converter control scheme includes an
inner current control loop, a Phase-Locked Loop
(PLL), two outer loops for active and reactive power
control, and two droop controls: frequency droop
and voltage droop. The GFM converter control,
instead, consists of an inner current control loop,
outer voltage control loop, and two droop controls:
an active power droop (used for synchronization)
and a reactive power droop. In both GFL and GFM
schemes, each droop controller is preceded by a
first-order low-pass filter G(s) = 1

τs+1 , where τ
is the filter time constant. The values of τ for all
droop filters (Gu and Gw in Figures 5b–5c) are
considered in this study as independent converter
control parameters and are thus treated as control-
related independent dimensions.

B. Analysis of The Generated Datasets

To validate the performance of the proposed tool,
datasets are generated under different parameter set-
tings. The resulting data are then analyzed in terms
of their composition and how they evolve during the
execution of the data generation process. Finally,
an Extreme Gradient Boosting (XGB) model [22]
is trained, and its accuracy is evaluated.

Two datasets are created, and their main dif-
ference lies in whether sensitivity information is
used during the data generation process. In Test #1,
sensitivity is not used; in this case, PSG and PIBR

are always split, following the approach in [16].
In Test #2, sensitivity is used to determine along
which dimension the split should be performed,
selecting the one that most strongly affects the

TABLE II: Summary of parameter settings and
datasets composition

TEST #1 TEST #2

Settings

nsamples 333

ncases 3

Max. depth 10 5

Min. feasible rate 5% 5%

Use sensitivity False True

Results

Total number

of instances
152,847 164,835

Feasible cases 6.01% 11.52%

Feasible discarded 56.82% 24.34%

Infeasible 37.17% 64.14%

Stable instances 64.54% 61.99%

Achieved max. depth 6 5

Stopping criterion Min. feasible rate Max. depth

stability outcome before splitting each cell. This
aims to demonstrate the necessity of incorporating
sensitivity information for larger systems and the
scalability improvements enabled by the proposed
tool. The other difference in the execution of the
data generation process concerns the maximum
exploration depth allowed. All parameter settings
are summarized in Table II. The main characteristics
of the resulting datasets (namely, the percentage
of feasible, discarded, and stable instances) are
also reported. The percentage of infeasible points
is high in both datasets, and particularly high in
Test #2. Figure 6 shows that a large portion of
the operating space in highly loaded conditions
is entirely infeasible. Subdividing the initial space
along the PSG and PIBR dimensions allows these
regions to be identified and excluded from sam-
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Fig. 5: Control schemes

pling. This is illustrated in Figure 7, which displays
the operating points and the resulting mesh of splits
in the PIBR,PSG plane. In Test #1, the upper regions
corresponding to infeasible areas are detected early
and are not further split or sampled. In Test #2, since
splits occur along other dimensions, these regions
continue to be sampled, which increases the number
of infeasible points. On the other side, always
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P
S
G
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]
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1 2 3 4
PIBR [GW]

TEST #2

Infeasible OP
Feasible
discarded OP Feasible OP Feasible PF

Fig. 6: Feasible and infeasible OPs and PF solutions
for the two test cases.

splitting along the same two directions significantly
increases the number of points that are discarded
because their feasible power flow solutions fall
outside the cell being explored. This occurs because
the cell dimensions are greatly reduced in Test #1,
whereas in Test #2 the cell dimensions remain larger
for almost the same achieved maximum depth (5 in
Test #1 and 6 in Test #2). This effect is visible in
Figure 7 and Figure 8, where the sampled points
are represented in planes associated with other
frequently selected splitting dimensions. The results
of the sensitivity analysis also allow us to assess the
importance of the percentage of GFM penetration
and of some control tuning parameters for stability.
Figure 9 shows the evolution of feasible rates as
a function of the depth, reporting the mean values
and the corresponding standard deviations over the
cells at each depth for the infeasible, feasible, and
feasible discarded points. The results confirm that
in Test #1 the infeasible rate decreases with depth,
but the rate of feasible discarded points increases
substantially, causing the feasible sampling rate
to fall below the threshold of 5%, marked with
the red line in Figure 9. Conversely, in Test #2,
although the infeasible rate is higher, the discarded
rate remains low enough to maintain an acceptable
feasible sampling rate.

Concerning the entropy, which is the other cri-
terion guiding the space exploration both toward
the stability margin and as a cutoff condition for
stopping the search, Figure 10 shows its evolution
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as a function of depth. In both test cases the entropy
remains above 60%, except at depth 6 of Test #1,
where only infeasible and discardable points are
found in the explored cells. Note that a perfectly
balanced condition corresponds to an entropy of
0.6931, therefore the entropy-based search strategy
ensures a sufficiently balanced dataset. Finally, an
XGB model is trained to evaluate the accuracy of
the machine learning approach for stability assess-
ment. Figure 11 shows the evolution of the accuracy
as a function of the exploration depth, meaning that
the training data used at each point correspond to
all samples obtained up to that depth. In this case,
the error bars represent the standard deviation of the
accuracy, computed using a k-fold cross-validation
with k = 5. An increasing trend is observed in
both test cases. However, while the model trained
with the data from Test #1 reaches a plateau, the
model trained with the data from Test #2 continues
to improve. Moreover, the accuracy achieved in
Test #2 is higher and reaches approximately 92%.

IV. CONCLUSION

This paper presented a data generation frame-
work for small-signal stability studies of large-scale
power systems with high penetration of IBRs. The
proposed tool addresses key limitations of exist-
ing sampling approaches by combining scalable
operating-space design, adaptive exploration guided
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by online sensitivity analysis and entropy-based cri-
teria, and full integration with HPC environments.

The case study demonstrated the applicability and
benefits of the proposed framework. The sensitivity-
driven sampling strategy produced a dataset with
higher feasible-sample density and superior perfor-
mance when used to train machine learning mod-
els for stability assessment. In contrast, the non-
sensitivity approach generated a larger proportion
of infeasible and discarded points, confirming that
sensitivity-guided exploration is essential for scal-
able data generation in large and complex systems.

The data generation framework developed in this
work is released as an open-source tool, fully imple-
mented in Python and publicly available on GitHub
at https://github.com/MauroGarciaLorenzo/datagen,
with the aim of facilitating reproducibility, encour-
aging collaboration, and supporting further devel-
opments in scalable stability assessment and data-
driven applications for power systems with high
levels of IBRs.

APPENDIX A
DYNAMIC EQUIVALENTS OF IBRS

AGGREGATION

This section presents the admittance-based fre-
quency scan analysis carried out to verify the dy-
namic equivalence of the IBRs aggregation em-
ployed in the data generation tool. The comparison
between the admittance-based frequency scans of
the base scenarios (with individually modeled IBRs)
and the corresponding aggregated scenarios is per-
formed under consistent operating conditions. The
aggregated converter is assigned a nominal power
equal to the sum of the nominal powers of the
individual converters it represents, and its operating
point corresponds to the total active power output
of those converters. Additionally, the voltage at the
bus to which the IBRs are connected, as well as
the voltage at the bus representing the Thevenin
equivalent of the remainder of the grid, are kept
equal across both scenarios. Figure 12 illustrates
two base scenarios along with their corresponding
aggregated equivalents. Figures 13a and 13b present
the comparison between the respective admittance-
based frequency scans, demonstrating a perfect
match between the responses obtained in the base
scenarios and those derived from the equivalent
aggregated representations.

APPENDIX B
TOOLS FOR POWER SYSTEM OPERATION AND

STABILITY ANALYSIS

To assess the small-signal stability of the sampled
operating points and associated IBRs control set-
tings, conventional power system stability analysis
tools are employed. These tools typically rely on
the linearized state-space representation of the sys-
tem. The eigenvalue analysis of the system’s state
matrix provides insight into system stability. The
linearization process is performed around an equi-
librium point, which can be obtained either through
time-domain simulations or PF calculations. In this
work, the latter approach is preferred due to its
computational efficiency. It is important to note
that, despite the sampling strategy being designed
to respect key relationships, it is still likely that
many sampled operating points do not satisfy the
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Fig. 12: Two operating scenarios and their equiva-
lent, in terms of GFM or GFL converters aggrega-
tion.

system’s feasibility constraints. This is primarily
due to the voltage profiles that, even if sampled
considering the existing relation between adjacent
buses, may lead to unrealistic or infeasible steady-
state conditions, such as reactive power injections
from generators that violate their capability curves.
Additional sources of infeasibility include viola-
tions of line thermal ratings, voltage magnitude
limits, and generators power factor. To ensure that
only feasible operating points are analyzed, these
constraints must be accounted for. Therefore, in-
stead of performing a standard PF calculation, an
OPF problem is solved. The objective function min-

(a) Scenario #1 and its equivalent.
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Fig. 13: Admittance frequency-scans comparison.
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imizes the squared difference between the sampled
active power set point of each generator and its
resulting active power injection. This formulation
allows the system to adjust controllable variables
within operational limits to satisfy all relevant con-
straints, ensuring that the resulting operating point
is both physically realistic and technically feasi-
ble. To implement these calculations in a Python
environment, the feasible operating point is com-
puted using the VeraGrid [23] library. The AC-OPF
implemented in VeraGrid, which considers voltage,
current, and generator power factor constraints as
described in [24], has been adapted to incorporate
the objective function described above. For the
small-signal stability analysis, the Python version
of the STAMP tool [25] is used, which is available
at [26].
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