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Abstract—This study proposes a control strategy to ensure the
safe operation of modern power systems with high penetration
of inverter-based resources (IBRs) within an optimal operation
framework. The objective is to obtain operating points that
satisfy the optimality conditions of a predefined problem while
guaranteeing small-signal stability. The methodology consists of
two stages. First, an offline analysis of a set of operating points
is performed to derive a data-driven regression-based expression
that captures a damping-based stability index as a function of the
operating conditions. Second, an Online Feedback Optimization
(OFO) controller is employed to drive the system toward an
optimal operating point while maintaining a secure distance from
the instability region. The proposed strategy is evaluated on an
academic test case based on a modified version of the IEEE 9-bus
system, in which synchronous generators are replaced by IBRs
operating under both grid-following and grid-forming control
modes. The results demonstrate the effectiveness of the method
and are discussed in detail.

Index Terms—Power system stability, Data-driven techniques,
Online Feedback Optimization, Power system control.

I. INTRODUCTION
A. Context and Motivation

The increasing penetration of renewable energy sources
(RES), combined with the progressive phase-out of fossil-fuel-
based synchronous generation, is transforming the electrical
grid into a power-electronics-dominated system. This tran-
sition is profoundly changing the grid’s dynamic behavior:
traditional synchronous generators (SGs) inherently provide
inertia and damping to electromechanical oscillations, whereas
inverter-based resources (IBRs) exhibit fast dynamics gov-
erned by their internal control loops. As a result, modern
power systems exhibit reduced inertia and are dominated by
faster, control-driven phenomena occurring on the timescale of
converter dynamics [1]], [2l]. Moreover, for both environmental
and economic reasons, system operation is incentivized to
maximize the utilization of renewable generation, particularly
from non-dispatchable sources such as photovoltaic (PV) and
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wind power. This trend further pushes power systems to
operate closer to their stability limits, where small disturbances
or unforeseen fluctuations in generation and demand can lead
to dynamic instabilities. Recent European network blackout
events, such as those that occurred in the Iberian Peninsula
and North Macedonia, serve as illustrative examples. Although
investigations into the root causes of these events are ongoing,
early analyses suggest that they were not caused by physical
damage to infrastructure or extreme weather conditions, but
rather occurred under normal operating conditions — one
during periods of high renewable generation [3], and another
during low nighttime weekend demand [4]. These events
have highlighted that transmission system operators (TSOs)
currently lack adequate real-time tools to monitor and manage
stability margins under rapidly changing operating conditions.

To address these challenges, numerous studies have pro-
posed incorporating stability constraints, both static and dy-
namic, into the optimal power flow (OPF) problem. Following
the conventional classification of power system stability [1]],
different stability-constrained OPF formulations can be de-
fined. Transient, voltage, and frequency stability-constrained
OPF addresses the effects of large disturbances, providing the
optimal pre-contingency generators dispatch able to withstand
contingencies as faults and outages [5]. When considering
small perturbations, small-signal stability-constrained OPF
(SSSC-OPF) can be employed. However, if the small-signal
model is properly formulated to capture electromagnetic tran-
sient (EMT) phenomena, SSSC-OPF is not limited to prevent
instabilities due to small-disturbances, but can also detect and
prevent from converter-driven and resonance-induced instabili-
ties. Consequently, the SSSC-OPF formulation ensures that the
system does not exhibit undamped oscillations during normal
operation or under small disturbances.

Concerning the real-time implementation of optimal oper-
ation algorithms, Online Feedback Optimization (OFO) has
emerged as a promising approach. The fundamental concept
of OFO is the implementation of optimization algorithms as
feedback controllers, which are coupled to physical plants via
a closed-loop scheme [6]. Through this interconnection, the
controller drives the operating point towards the solution of the
optimization problem using real-time measurements instead of
computing the equations that describe the system’s behavior.
As a result, the system exhibits robustness to disturbances and
uncertainties. Furthermore, by circumventing the numerical
evaluation of the nonlinear plant model, the computational
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burden is significantly reduced while preserving the industrial
property [7]].

To contextualize the proposed approach, the following sec-
tion reviews relevant literature on SSSC-OPF formulations and
the application of OFO in power system operation.

B. Literature Review

1) Small-signal Stability-Constrained Optimal Power Flow:
Numerous formulations have been proposed in the literature
to improve the tractability of the SSSC-OPF problem by cir-
cumventing the explicit inclusion of the full set of differential
algebraic equations (DAE) describing system dynamics [S8]],
[O, [10]. Some approaches rely on the linearized state-
space representation of these DAE and the corresponding
eigenvalue analysis, as commonly employed in small-signal
stability assessment [L1]. However, the relationship between
the eigenvalue-based indicators (e.g., damping ratios and real
parts of eigenvalues) and the system states and parameters
is implicit [12]. To address this issue, several studies have
proposed sensitivity-based formulations, where the stability
constraint is expressed in terms of the linear sensitivities of the
system state matrix eigenvalues with respect to small variations
in generators’ active power [9], [13]]. Despite limiting the
analysis to a number of critical eigenvalues, the recalculation
of the sensitivities at each iteration remains a necessity, making
these approaches unsuitable for real-time operation.

The employment of machine learning (ML)-based surrogate
models can facilitate the formulation of stability constraints,
thereby alleviating the computational burden [14]]. This ap-
proach, generally named Constraint Learning (CL) [L5]], [L6],
is particularly effective when the analytical expression of the
intended constraint is unknown or complex [16]]. Moreover,
ML techniques shift the most computationally demanding
tasks to the offline phase, during which the model is trained
and the necessary training data are generated and collected.
Once trained, the model can be used online to provide a fast
and efficient evaluation of the stability constraint. As reviewed
in [15]], commonly used ML models for CL include both linear
approaches, such as linear regression and Support Vector Ma-
chines (SVMs) with linear kernels, and nonlinear models, in-
cluding Decision Trees (DTs), ensemble methods, and Neural
Networks (NNs). While these nonlinear models can capture the
behavior of small-signal stability indices, their integration into
OPF formulations typically requires linearization techniques
involving binary variables [15]], as demonstrated in [[17], [10].
This results in mixed-integer nonlinear programming (MINLP)
problems, whose solution for large-scale power systems re-
mains computationally challenging and often intractable [18].
In [19], an SVM is employed to formulate a linear small-
signal stability constraint with good computational efficiency.
However, the method relies on locally trained models built
around each unstable operating point, making it suitable for
corrective re-dispatch rather than real-time preventive control.
In a previous work by the authors [20], the performance of
linear models was compared against Multivariate Adaptive
Regression Splines (MARS) [21]], a nonlinear regression tech-
nique identified as suitable for inclusion in OPF formulations.

MARS provides a continuous and differentiable analytical
expression (class C') [21], making it compatible with OPF
problems solved via sequential quadratic programming (SQP),
in contrast to the previously mentioned nonlinear models.
Moreover, MARS demonstrated superior robustness, with re-
spect to the linear models, in estimating small-signal stability
indicators across OPF formulations with different objective
functions.

2) Online Feedback Optimization in Power Systems Opera-
tion: Up to now, OFO has been mainly investigated in the con-
text of distribution system operation, where its advantages are
particularly significant due to the lack of accurate grid models
and the uncertainty associated with RES. Applications in the
literature include voltage regulation [22], [23] and optimal
reactive power dispatch [24]]. More recently, its applicability
to transmission systems has also been demonstrated, where its
main advantages lie in the smooth, continuous control actions
it enables against disturbances. Although TSOs typically pos-
sess system models, their accuracy may be limited, and relying
directly on real-time measurements can offer a more robust and
adaptive alternative [25[]. Furthermore, incorporating small-
signal stability constraints into OFO can also be relevant for
distribution systems operating in islanded or weakly connected
modes, provided that suitable small-signal models (obtained
through dynamic system identification or black-box modeling)
are available.

C. Contributions

This paper presents a novel framework that integrates OFO
with ML-based small-signal stability constraints to enable real-
time, stability-constrained power system operation. The main
contributions are summarized as follows:

o Development of a Small-Signal Stability-Constrained On-
line Feedback Optimization (SSSC-OFO) formulation
capable of real-time generator dispatch adjustment to
ensure static and dynamic stability.

o Comparative evaluation of the proposed SSSC-OFO
against a conventional SSSC-OPF in terms of perfor-
mance and computational efficiency.

o Application and validation on a power-electronics-
dominated test system comprising grid-following (GFL)
and grid-forming (GFM) converters with minimized syn-
chronous generation.

D. Paper Organization

The paper is organized as follows. Section [lI| describes
the three main components of the proposed methodology: the
formulation of the small-signal stability constraint using data-
driven regression, the formulation of the OFO framework,
and their integration into the proposed SSSC-OFO scheme.
Section [ITI] presents the application of the proposed method
to a test system and discusses the obtained results in detail.
Finally, Section [[V|provides concluding remarks and outlines
directions for future research.



II. METHODOLOGY DESCRIPTION
A. Small-Signal Stability Constraint Formulation

To formulate a constraint on system dynamics for inclusion
in the optimal operation problem, a regression-based approach
is employed. The use of regression provides a compact surro-
gate model of an otherwise complex problem. The regression-
based surrogate is trained to provide the same outcome as the
conventional eigenvalue-based analysis of the linearized state-
space of the system, while offering a significantly simpler
formulation that reduces the dimensionality of the problem.
Moreover, regression techniques provide flexibility in selecting
the mathematical representation most suitable depending on
how the optimization problem is formulated. In this work,
MARS is employed for its ability and robustness in capturing
the nonlinear relation between the OPF control variables and
the stability indicator [20]], and for providing an analytic
expression of class C!, suitable for formulating a smooth
constraint in an SQP-based optimization.

To develop the regression model, a representative training
dataset is required. This dataset must capture the mapping
between system operating conditions and small-signal stability
across the entire operable space, while providing finer gran-
ularity near the stability boundary — i.e., the region where
both stable and unstable operating points occur. A dataset
with such features needs to be generated synthetically [26], by
performing stability analyses for a large number of operating
points sampled within the operable space. Formally, the train-
ing dataset can be expressed as D = (X | z). The matrix X
contains the system state variables for each sampled operating
point, including bus voltage magnitudes and phases, as well
as generators and loads active and reactive power injections.
The vector z stores the corresponding stability assessment
outcomes. Since regression requires a continuous numerical
target, z is expressed in terms of a stability index. For small-
signal stability, this can be the Damping Index (DI) defined
in [27], given as

DI =1 —min{&1, ..., }, (1)

where &; denotes the damping ratio of the i-th complex
eigenvalue \;, and |A| is the number of critical eigenvalues, as
defined in [28]]. Given this formulation of the DI, small-signal
stability is satisfied if DI < 1. Moreover, a stricter requirement
can be imposed by introducing a threshold # < 1, such that
DI < 0, thereby enforcing a prescribed damping margin.

Once the training dataset is generated, the MARS model
is fitted. MARS expresses the regression function as a linear
combination of piecewise-linear basis functions, known as
hinge functions. For the i-th variable x; € X, a hinge function
is defined as

h(X) = max{0,x; —t} or max{0,t—x;}, (2)

where t is a point within the range of x; in the training dataset,
referred to as a knot. Although each basis function depends
only on the single variable x;, it is formally regarded as a func-
tion defined over the entire input space [29]]. During training,
the MARS algorithm automatically determines the placement
of knots and selects the hinge functions that contribute most to

improving regression accuracy while ensuring generalization.
The resulting regression model takes the form

M
9X)=Bo+ Y _ Bmhm(X), 3)
m=1

where [y is the intercept, 3, are the coefficients of the
hinge functions h,,(X), and M is the number of selected
basis functions. Finally, within an optimization problem, the
guarantee of small-signal stability is provided by including the
constraint

g(X) <6 with 0 <1. 4)

B. Online Feedback Optimization

The OFO technique is based on the integration of the
dynamics of a numerical optimization solver and the system
dynamics to be controlled within a closed-loop structure. In
this configuration, the solver is employed to update the control
inputs for the system in response to the measurements obtained
from the system. Note that this approach does not require
an accurate plant model since is based on real-time mea-
surements. Instead, it only requires the system’s input-output
sensitivities, which can be obtained on site [23]]. Therefore,
the performance of the controller remains unaffected by model
inaccuracies and is robust to disturbances and uncertainty, as
these effects are implicit in the measurements.

The objective of OFO-based techniques is to steer the
power system towards a steady-state optimal operating point.
Therefore, under certain assumptions concerning the separa-
tion of time scales and the rapid mitigation of transients [30],
the power system may be solely defined by its steady-state
behavior. In this context, consider a set of nonlinear algebraic
equations f(-), as follows:

y = f(u,w), (5)

where the vector y € R™ represents the system outputs or
measurements, while the vectors u € RP and w € RY,
respectively, represent the controlled and exogenous system
inputs. The set of equations (E]) includes, but is not limited to,
the equations that describe the power flow problem and the
stationary effect of the controllers implemented in the IBRs
and SGs. It should be noted that the specific expressions of
(@) are irrelevant to the OFO-based controller design process,
and they are only included for clarification purposes.

To obtain the OFO-based control law that optimizes the
operating point of the system, we first need to define the
following optimization problem:

minimize y¢(y,u), (5a)
subject to y — f(u,w) =0, (5b)
ueu, (5¢)

ye, (5d)

where ¢(-) is the scalar objective function, 7 is a scaling
factor enhancing the convexity of the objective function, the
nonempty sets ) and U represent the feasible hyper-spaces of
the corresponding variables. The constraint in (5b) stipulates
that the operating point must be one that is physically feasible



for the system. Whereas, the purpose of the two constraints in
(5¢)-(5d) is to ensure that the variables remain within a feasible
space from the engineering point of view. These constraints
are typically expressed as box-constraints. Thus, both sets of
constraints can be expressed linearly as follows:

b—Au>0,

6

where the vectors b and d encapsulate the limits imposed on
the variables, whereas matrices A and C contain the constants
that scale and change the sign of the variables.

The nonconvexity of the optimization problem (3a)-(3d) is
addressed through the implementation of a projected gradient
flow algorithm as presented in [31]. Starting from the control
action u in the current iteration, the control algorithm proceeds
to update the value (u') using a projected gradient step
method with a fixed step siz as follows:

ut =u+a6(u,y), @)

where « is a nonnegative fixed step-size, and & (-) is the
direction vector calculated as follows:

(u,y) = arg min |6 +9GTH Vf(y,w) " [&  (8a)

subject to b — A(u+ «d) > 0,
d—-C(y +aV,fd) >0,

(8b)
(80)

where § is an auxiliary vector that corresponds to the pro-
jection of the optimal direction onto the feasible hyperspace,
F' = [Ip \Y% 4 T} corresponds to the sensitivity matrix, which
appears as a consequence of the chain rule, and G weights
the changes in the control variables.

Equations (7) and (8) define the structure of the OFO-based
controller. As mentioned above, note that the computation
of f(-) does not appear in the controller structure; only the
sensitivity matrix value, F, is required. It is also noteworthy
that the solution to problem , obtained at each iteration,
guarantees that the point to which the system moves satisfies
the constraint sets @ under the consideration that the incre-
ment is sufficiently small and can be approximated linearly.

Finally, note that due to its integral structure, when the
controller reaches a steady state (u™ = u), the value of & ()
must be null (considering that « is a constant and positive
value). For this to occur, the value of V,¢(y,u) must be
equal to zero, indicating that the solution is a critical point of
¢(+) or there exist no projection onto the feasible region, which
means that the point resides at the boundary of this region and
the direction of descent is perpendicular to the tangent of the
boundary at that point.

C. Small-signal Stability Constrained Online Feedback Opti-
mization

The OFO formulation presented in the previous section does
not guarantee small-signal stability of its solutions, since no
constraints on system dynamics are incorporated. To ensure

A fixed step size algorithm must be used as an adverse consequence of
not evaluating the set of equations f(-) numerically.

stability, the regression-based constraint in (@) must be added
to the optimization problem defined in (3a)-(5d).

minimize - f(y,u)
u

6B, G, Gd)

0—g(y,u,w) >0

subject to
(9a)

where g(-) is expressed as function of the variables
{wy,w}CX.

III. NUMERICAL EVALUATION

This section presents the application of the proposed
methodology to an academic test system, namely a modified
version of the IEEE 9 bus system. This case study enables
a clear illustration and visualization of the main insights
underlying the methodology. Furthermore, the validation of
the proposed SSSC-OPF formulation is provided.

A. Test System

The simulation test bench is based on a modified version
of the IEEE 9-bus system [32]. It represents a three-phase
high-voltage transmission network consisting of nine buses, six
transmission lines, three transformers, three load substations,
and three generators. In contrast to the original system, which
includes three SGs, two SGs are replaced with IBRs to emulate
a scenario with high penetration of power electronics devices.
Furthermore, to account for the impact of control strategies
on system stability, one IBR is operated under GFM control
while the other is operated under GFL control.

Figure [I] shows the one-line diagram of the system under
analysis. The electrical lines of the system are considered
symmetrical and are modeled using a m-model. The character
of the lines is predominantly inductive, and all parameters
are obtained from [32]. Power substations are modeled as
constant impedance balanced loads (R-L shunts load model).
Table [I| summarizes the main characteristics of the substations
demand, including the load participation factors (i.e., the per-
centage of the total system demand allocated to each load), the
load power factors, and the overall range of system demand.
Concerning the generators, it is assumed that both SG and
IBRs are equipped with a primary power source that allows
them to operate effectively at any feasible operating point. In
addition, all generators have a communication system with a
centralized control layer that calculates their setpoints. At the
local level, the SG is incorporated with a governor and an AVR
to regulate its steady-state outputs to the values dispatched by
the proposed control layer. Therefore, the setpoints for SGs are
defined as the injected active power and the generated voltage
amplitude, measured at the bus to which they are connected.
The IBR connected to bus 1 is configured to operate in a
GFM mode, and therefore indicated as GFM;. The device
is equipped with an internal current control loop and an
external voltage control loop. In addition, it contains an active
power droop control stage, employed for synchronization,
and reactive power droop. The IBR connected to bus 3 is
configured to operate in a GFL mode, and therefore indicated
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Fig. 1. One-line diagram of the 9-bus system.

as GFL3. The GFL control scheme comprises a Phase-Locked
Loop (PLL), an inner current control loop, an outer control
loop for active power fed by a frequency droop control, and
an outer reactive power control fed by a voltage droop. Table|[l]
summarizes the main generator parameters, including their
rated power, rated voltage, and the assumed operating active
power ranges.

TABLE I
MAIN LOADS PARAMETERS

Min [MW] Max [MW]  cos(¢)
Total Demand 2154 775.5 0.98
Ls Le Ls
Load Participation Factor
[% Total Demand] 40% 28% 32%
TABLE 11
MAIN GENERATORS PARAMETERS
GFM; SG2 GFL3
Rated Power [MVA] 512 270 125
Active Power Operating Range
[% Rated Power] 20% — 95%
Rated RMS Voltage [kV] 24 18 15.5

B. Optimization Problem

The optimization problem formulated in this study aims to
address two fundamental objectives of power system opera-
tion: efficiency and sustainability, while accounting for system
limitations and both static and dynamic stability constraints.
Accordingly, the objective function seeks to minimize power
losses and reduce the active power output of SGa, considering
it as representing a fossil-fuel-based thermal power plant. The
resulting objective function is therefore defined as a weighted
sum of the squared power outputs of the generators, as in

#(y,u) = PgFMl +10- P5202 + PgFLg (10)

where the weighting factor associated with Psg, penalizes
fossil-based generation, and the use of squared power terms

enhances the convexity of the objective function. Moreover,
the values of the injected power are expressed in per unit
with respect to generators nominal power, to fairly compare
all generators regardless of its size.

The system limitations include generator capability bound-
aries (as defined by the active power operating range in Ta-
ble [II), whereas the static stability constraints enforce voltage
magnitude limits (0.9 p.u. < V < 1.1 p.u.). The dynamic
stability constraint is designed to ensure that the system
maintains a minimum level of small-signal damping required
for stable operation. Accordingly, § = 1—¢ (with e = 1le—5) is
set in (9a)), ensuring a DI < 1. Following the proposed SSSC-
OFO formulation, the setup described below is adopted.

e Power flow configuration: Bus 1 is designated as the
system slack bus, buses 2 and 3 are modeled as PV buses,
and the remaining buses operate as PQ buses.

o Control actions: The controllable generator power set-
points and the voltage setpoints of all generators consti-
tute the vector of control actions, defined as

u:[PSGQ’PGFL37V17%7‘/é]' (11)

o System outputs: The output vector y includes both the
variables subject to operational constraints and other
measurable quantities of interest, defined as

y = [PGFMUPSsz‘/la‘/27‘/37‘/4"/51‘/67‘/77‘/85‘/9]' (12)

C. Regression-based Stability Constraint Training

The training dataset is generated using the methodology
proposed in [28], by varying demand and generation within
the operating ranges specified in Tables The stability
assessment of each operating point is executed by using the
eigenvalues-based analysis provided by the STAMP tool [33]].
Figure |2| presents a 3D scatter plot of the dataset instances.
On the left, the samples are shown as a function of the total
power demand (Pp), the share of this demand supplied by the
SG, and the distribution of the remaining demand between
the GFM and GFL converters. Analysis of these instances
indicates that system loading above 400 MW tends to induce
instability. Increasing the share of power supplied by the SG
mitigates this effect, while, for equal SG participation, a lower
contribution from the GFM converter enhances stability. On
the right, the training samples are represented as a function of
the voltage setpoints of the three generators. This visualization
reveals that when the voltage of GFM; exceeds 1 p.u., the
system becomes unstable. Given this insight into the system’s
dynamic behavior, an OPF is formulated in this study with a
voltage constraint at bus 1 of 0.9 < V; < 1.0 p.u., and its
solutions are compared with those obtained from the SSSC-
OFO and SSSC-OPF formulations, which incorporate the
regression-based stability constraint. However, it is important
to note that such relationships are relatively easy to identify
in this small 9-bus system, whereas in larger networks this
approach would be impractical, as these dependencies become
much less apparent. Figure [3] shows the eigenvalues obtained
from the small-signal stability analysis of all dataset operating
points, with a zoom on the critical eigenvalues that are used for
training the regression model. For this group of eigenvalues,
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Fig. 3. Modal map of the eigenvalues of the operating points in the training
dataset.

the DI is computed as defined in (T)) and used as the regression
target. Before training, the data are preprocessed by applying
feature selection, retaining as model inputs only uncorrelated
variables. Model accuracy is then evaluated using an 80/20
split of the dataset for training and testing, respectively. The
resulting R? score is 0.999 which confirms the suitability of
the regression model for this task. Finally, the model is trained
using the full dataset. The training process follows the two-
step MARS fitting procedure: a forward selection phase and
a backward pruning phase [29]. The pruning step reveals that
only two quantities are sufficient to fit a model that accurately
computes the DI, namely the voltage magnitudes at buses 1
and 6. The resulting expression is therefore:

g(X) = 0.0036 max{0, 0.9269 — Vg}
— 0.0295 max{0, 0.9757 — V;}
+ 0.0290 max{0, V; — 0.9757}
— 0.0071 max{0, Vg — 0.9269} + 0.9991.

13)

D. SSSC-OFO Validation

The validation procedure is designed to assess the effec-
tiveness of the proposed SSSC-OFO framework in terms
of its capability to achieve optimal and dynamically stable
solutions, as well as its computational efficiency. To this end,
the solutions obtained from the SSSC-OFO are compared with
those derived from optimization problems without stability

TABLE III
REGRESSION ACCURACY

Training Data Set
(80% train / 20% test)

R? 0.999

Testing Data Set
(OPF solution)

0.9866

constraints, namely, the conventional OFO and OPF formu-
lations, in order to evaluate the ability of the SSSC-OFO to
identify stable solutions when the unconstrained optima are
unstable. Furthermore, the performance of the SSSC-OFO is
benchmarked against that of the SSSC-OPF to highlight the
computational advantages of adopting an OFO-based approach
for real-time system operation. Finally, a comparison is car-
ried out against an OPF formulation that includes a voltage
constraint at bus 1 (V3 < 1 p.u.) to assess whether the
regression-based approach provides a more effective means of
formulating stability constraints than a simple rule-of-thumb
method, which is feasible only for small systems where such
relationships are easily identifiable.

Before proceeding with the validation, the system’s stability
behaviour is first explored within the region of the operating
space associated with the optimal solutions of the problem
defined by the objective function in (T0). This preliminary
analysis aims to identify the stability characteristics of the
operating region relevant to the optimal solutions. To this
end, the OPF is solved for 100 operating points uniformly
distributed across the system’s operable region, and the small-
signal stability of each resulting optimal operating point is
evaluated. The obtained results are illustrated in Figure [
The analysis reveals that, for this specific objective function,
the optimal solutions tend to drive the system into unstable
operating regions. In order to minimize the total power injected
by the generators, the optimization increases the generator
voltage levels. Moreover, to further reduce the power con-
tribution from the SG, it is dispatched primarily under high-
demand conditions, where its output is required to complement
the generation of the other two units, otherwise it is set to
its minimum value. Consistent with the behaviour observed
in the training dataset, these operating conditions correspond
to those that push the system toward instability. A further
step in this preliminary analysis is to evaluate the regression
accuracy in estimating the DI of the OPF solutions. As
reported in Table the obtained R? value of 0.9866 confirms
the suitability of the regression model for use as a stability
constraint, enabling the subsequent validation analysis. Given
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Fig. 4. OPF solutions as functions of the generators active power and voltage.

that all the optimal solutions of this problem are small-signal
unstable, the performance of the SSSC-OFO is examined in
greater detail by selecting three operating points representative
of different demand levels. Table [Vl summarizes for each
case, the obtained active and reactive power dispatch of the
generators, the corresponding objective function value ¢(u,y),



TABLE IV
SOLUTIONS DESCRIPTION SUMMARY.
Case Poryvy,  Psg, Porr; Qcrmy  Qsa, QGFLs Fly,u) DI DI
MwW MW MW Mvar Mvar Mvar ? by MARS Exact
OPF 128.24 54 25 -26.71 -29.09 -40.77 0.5027 1.0008 1.0011
Low OFO 128.23 54 25 -26.96 -28.78 -42.04 0.5027 1.0009 1.0011
Demand Case SSSC-OFO 128.37 54 25 -20.12 -22.26 -34.54 0.5029 0.9995 0.9996
(Pp =207.23 MW)  SSSC-OPF 128.36 54 25 -23.11 -21.6 -33.6 0.5028 0.9995 0.9996
OPF V7 <1 128.41 54 25 -21 -17.96 -33.79 0.5029 0.9991 0.9992
OPF 239.54 54 25 10.45 -16.64 -32.08 0.6589 1.0014 1.0015
Medium OFO 239.55 54 25 12.54 -17.38 -32.95 0.6589 1.0015 1.0016
Demand Case SSSC-OFO 240.29 54 25 12.61 -2.19 -17.08 0.6603 0.9995 0.9995
(Pp = 318.55 MW)  SSSC-OPF 240.30 54 25 11.20 -9.48 -9.33 0.6603 0.9995 0.9995
OPF V; <1 223.21 54 42.08 -41.07 11.23 3.26 0.7034 0.9989 0.9989
OPF 486.40 56.32 118.70 161.28 47.73 35.90 0.2239 1.0020 1.0020
High OFO 486.40 56.27 118.75 161.29 47.73 35.91 0.2239 1.0020 1.0020
Demand Case SSSC-OFO 486.40 62.56 118.75 160.21 91.22 78.82 0.2342 0.9995 0.9996
(Pp =661.41 MW)  SSSC-OPF 486.40 62.61 118.69 160.30 91.32 78.70 0.2342 0.9995 0.9996
OPF V7 <1 486.40 63.78 117.34 192.57 113.36 40.94 0.2342 0.9998 1.0000
and the DI values computed both by the regression model L1 P OFO
and by the exact eigenvalue analysis of the linearized state- I N e _;;ZROFO
space model of the system. Figures [5H7 present detailed results P I e = o e s s SSSC-OPF
OPF Vi <1

for the three operating cases, including the modal maps and
voltage profiles. It can be observed that, for all demand levels,
the OFO and OPF solutions coincide, thereby confirming the
consistency and correctness of the OFO formulation. Simi-
larly, the SSSC-OFO and SSSC-OPF solutions exhibit almost
identical results, with matching active power dispatch among
generators, very similar voltage profiles, and stable operating
points. Finally, the solutions of the OPF with the voltage
constraint at bus 1 indicate that this formulation does not
always yield an optimal solution (as in the medium-demand
case) or a stable one (as in the high-demand case).

Table [V| reports the number of iterations required by each
model to reach convergence under different demand levels.
The results show that the proposed SSSC-OFO achieves
convergence with a significantly lower number of iterations
compared to the unconstrained OFO, particularly at medium
and high demand levels. This demonstrates the effectiveness
of incorporating the regression-based small-signal stability
constraint, which guides the optimization toward feasible and
dynamically stable regions, improving numerical convergence.
In contrast, the conventional OFO requires many more itera-
tions, especially in the low- and medium-demand cases, where
instability or constraint violations hinder convergence. The
SSSC-OPF exhibits comparable or even faster convergence
than SSSC-OFO, as expected for an offline solver, while the
standard OPF and voltage-constrained OPF show inconsistent
iteration counts across demand levels.

TABLE V
NUMBER OF ITERATIONS FOR EACH MODEL AND DEMAND LEVEL

Model / Case Demand Level

Low Medium High
OPF 106 15 21
OFO 352 63 11
SSSC-OFO 73 47 4
SSSC-OPF 11 51 23
OPF (V1 <1) 16 76 18
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Overall, the SSSC-OFO provides a favorable trade-off
between stability enforcement and computational efficiency,
making it suitable for online operation. Appendix [A] reports
the parameters v and G, which were tuned to enhance the
performance of each model and ensure a fair comparison
among the different solutions.

IV. CONCLUSIONS AND FUTURE WORK

This paper presented a SSSC-OFO framework enabling
real-time optimal operation of power systems while explic-
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itly accounting for dynamic stability margins. The proposed
methodology integrates a data-driven regression-based formu-
lation of the small-signal stability constraint into an OFO
structure, allowing fast evaluation and enforcement of stability
conditions during operation. Simulation results on a modified
IEEE 9-bus system demonstrated that the SSSC-OFO reliably
guides the system toward stable and near-optimal operating
points, succeeding in ensuring stability in cases where opti-
mization without dynamic restrictions would lead to unstable
operating conditions, while achieving comparable or reduced
computational effort.

Future work will focus on extending the proposed method-
ology to larger and more realistic power systems to further
evaluate scalability and performance. In addition, efforts will
be directed toward adapting the formulation for application to
hybrid AC/DC networks, particularly in the presence of HVDC
links.

APPENDIX A
OPTIMAL POWER FLOW AND ONLINE FEEDBACK
OPTIMIZATION PARAMETERS TUNING

TABLE VI
PARAMETERS OF LOW DEMAND CASE.

Model o' G
OPF 1000 -
SSSC-OPF 1000 -
OFO 100 diag(1, 1, 0.1, 0.1, 0.1)
SSSC-OFO 100  diag(1, 1, 0.1, 0.1, 0.1)
OPF Vi <1 100 -

TABLE VII

PARAMETERS OF THE MEDIUM AND HIGH DEMAND CASES

Model il G
Medium  High
OPF 100 -
SSSC-OPF 10 100 -
OFO 100 diag(1, 1, 0.2, 0.2, 0.2)
SSSC-OFO 100 diag(1, 1, 0.2, 0.2, 0.2)
OPF V1 <1 100 -
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