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Abstract—Modern power networks face increasing vulnerabil-
ity to cascading failures due to high complexity and the grow-
ing penetration of intermittent resources, necessitating rigorous
security assessment beyond the conventional N — 1 criterion.
Current approaches often struggle to achieve the computational
tractability required for exhaustive N — 2 contingency analysis
integrated with complex stability evaluations like small-signal
stability. Addressing this computational bottleneck and the limi-
tations of deterministic screening, this paper presents a scalable
methodology for the vulnerability assessment of modern power
networks, integrating N — 2 contingency analysis with small-
signal stability evaluation. To prioritize critical components, we
propose a probabilistic Risk Index (R;) that weights the deter-
ministic severity of a contingency (including optimal power flow
divergence, islanding, and oscillatory instability) by the failure
Jrequency of the involved elements based on reliability data. The
proposed framework is implemented using High-Performance
Computing (HPC) techniques through the PyCOMPSs parallel
programming library, orchestrating optimal power flow simula-
tions (VeraGrid) and small-signal analysis (STAMP) to enable
the exhaustive exploration of massive contingency sets. The
methodology is validated on the IEEE 118-bus test system,
processing more than 57000 scenarios to identify components
prone to triggering cascading failures. Results demonstrate that
the risk-based approach effectively isolates critical assets that
deterministic /N —1 criteria often overlook. This work establishes
a replicable and efficient workflow for probabilistic security
assessment, suitable for large-scale networks and capable of sup-
porting operator decision-making in near real-time environments.

Index Terms—Power System Reliability, Risk Assessment, N-2
Contingency, High Performance Computing, Risk index

I. INTRODUCTION

ODERN power networks are becoming increasingly

complex, which heightens their vulnerability and ne-
cessitates rigorous assessment of their security posture [I]]
against cascading failures initiated by simultaneous outages
(N — 2 contingencies). Conventional security analyses typ-
ically focus on single-outage scenarios (N — 1) and often
overlook the combined effects of multiple concurrent outages,
which may have been the root cause of large-scale historical
blackouts, such as the one that occurred on 28 April 2025 in
Spain and Portugal [2]. The increasing penetration of decen-
tralized renewable energy sources and fast power electronics
interfaced devices further complicates stability analysis [3]],
making system vulnerability assessment under severe multiple
contingencies a critical task for grid operators.
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The comprehensive assessment of N — k contingencies has
evolved primarily along three main axes: security assessment
methodologies, risk integration, and computational accelera-
tion. Traditional deterministic contingency screening, while
foundational, is often insufficient for modern complexity,
prompting a shift toward probabilistic security assessment
(PSA) which integrates component reliability data [4f]-[7]].
Previous works have successfully deployed Monte Carlo and
probabilistic methods to rank risks based on power flow
violations or transient stability criteria [8]—[11]. However,
these approaches often use simplified system models or fail to
capture the full spectrum of post-contingency failure modes.
A particularly persistent challenge is the integration of small-
signal stability (SSS) analysis, which is essential for detect-
ing growing oscillatory modes, into exhaustive probabilistic
frameworks [[12]], [13]]. While tools for automated SSS model-
ing exist [14], they are computationally intensive. Furthermore,
the explicit modeling of structural failure modes, such as sys-
tem islanding—a common precursor to cascading collapse—is
frequently overlooked in large-scale screening methodologies.
Addressing the computational load, High Performance Com-
puting (HPC) has been successfully demonstrated to scale
dynamic security assessments [15]], though integrating this
acceleration with open-source power flow platforms [16] and
rigorous linearized EMT-based stability analyses for exhaus-
tive N — 2 evaluation remains a crucial implementation gap.
Our work addresses these combined challenges:

1) We move beyond N — 1 and partial screening to provide
an exhaustive N — 2 analysis of the test system.

2) We define a multi-criteria risk index (R;) that uniquely
combines optimal power flow divergence, islanding, and,
critically, small-signal instability.

3) We demonstrate a replicable HPC parallelization
strategy using PyCOMPSs to make this complex,
multi-criteria, and exhaustive analysis computationally
tractable.

This work presents a systematic and scalable methodology
for performing exhaustive N — 2 contingency analysis, with
the capacity to assess the impact on operational security
through optimal power flow, small-signal stability, and island-
ing detection (a multi-criteria scoring). The methodology is
evaluated and validated on the IEEE 118-bus test system [[17]],
where results demonstrate the efficacy of the new probabilistic
risk index compared to classic deterministic security criteria.
Specifically, we assess both single (N — 1) and simultaneous
double (N — 2) outages in AC lines, transformers and gen-
erators by modeling the post-contingency optimal power flow
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and subsequently analyzing the eigenvalues of the linearized
system state model to determine its stability. The ultimate goal
is to define a robust and probabilistic ranking of the network’s
critical components.

The contributions of this paper are:

o The definition and validation of a probabilistic multi-
criteria Risk Index (R;), which systematically combines
AC optimal power flow feasibility, small-signal stability,
and islanding criteria into a single risk metric weighted
by component failure frequency.

« Exhaustive processing of 57 122 scenarios (encompassing
single NV — 1 and ordered double N — 2 outages), which
serves as the foundational data set for the development
and validation of the proposed probabilistic Risk Index
(Ry).

o Implementation of a replicable HPC parallelization strat-
egy using the PyCOMPSs framework, ensuring that this
complex, multi-criteria, and exhaustive analysis achieves
scalability for potential execution within operational time-
frames (below 15 minutes).

The proposed methodology is tested and validated using
the IEEE 118-bus test system, a medium-sized yet highly
interconnected benchmark network. This validation involves
the exhaustive processing of 57122 contingency scenarios
(covering all N — 1 and ordered N — 2 outages), which rep-
resents a significant computational challenge. By successfully
managing this massive scope, the framework demonstrates its
effectiveness and scalability in identifying critical assets and
providing a realistic risk ranking for modern power networks.

The paper is organized as follows. Section II provides a
detailed description of the proposed Methodology, including
the exhaustive contingency analysis, the multi-criteria severity
assessment (power flow, small-signal stability, and islanding),
and the probabilistic Risk Index formulation. Section III details
the HPC-Enabled Parallel Implementation using PyCOMPSs.
Section IV introduces the Case Study and Simulation Tools
(the TIEEE 118-bus test system and specific reliability data).
Section V presents the Results and Discussion, including the
contingency coverage, stability analysis, and the computed
critical component ranking based on R;, along with opera-
tional implications and future proposals. Finally, Section VI
provides the Conclusion and Future Work.

II. METHODOLOGY
A. Exhaustive Contingency Analysis

The first step is to identify all the elements in the network
that could fail, as well as all the possible combinations of
two elements that could fail simultaneously. In particular,
we consider contingencies involving transmission lines, power
transformers and generators. The following procedure is im-
plemented to determine under what contingencies the system
cannot be operated:

1) Start from the base state of the system, compute the
pre-contingency optimal power flow, and verify that the
system 1is initially stable to establish a reference.

2) For each element ¢ (line, transformer or generator) in
the network:

a) N — 1 contingency (first outage): Simulate the
outage of element ¢, compute the optimal power
flow, perform small-signal stability analysis, check
for island formation, and store the results.

b) For each remaining element j such that j # i:

i) N — 2 contingency (second outage): With ¢
already out, simulate the outage of j. Compute
optimal power flow, assess small-signal stabil-
ity, check for islands and store results.

ii) Restore element j to service.

¢) Restore element 7 to service.

3) Analyze the complete set of results to identify the most
critical elements.

As indicated in the algorithm, during each contingency
simulation we check for possible separation into electrical
islands. In general, a division of the system into multiple
areas can affect the analysis: often, only the main island
interconnected to the largest generation should be taken as
reference. In this initial stage, any scenario that results in
islanding is marked as critical and kept in the study for specific
revision afterwards.

B. Multi-Criteria Severity Assessment

The severity, S. € {0,1}, of a post-contingency state c is
determined by the consideration of distinct criteria. For the
contingency to be classified as severe (S. = 1), at least one
of the following conditions must be fulfilled:

1) Optimal Power Flow Feasibility and Operational Limits:
A contingency c is considered severe if the AC optimal power
flow solution does not converge, suggesting a structurally non-
feasible operating point, or if the converged solution violates
pre-defined operational limits (e.g., thermal limits, voltage
bounds).

2) Small-Signal Stability Evaluation: To perform the small-
signal analysis, we construct and linearize the complete system
model at the operating point obtained from the optimal power
flow solution. The general state-space formulation for small
perturbations is applied, following established control theory
principles for power systems [[18]].

Small-signal stability is assessed from the eigenvalues of
the state matrix, and any contingency leading to at least
one eigenvalue with non-negative real part (Ri()\;) > 0) is
classified as unstable.

3) System Integrity: Islanding Detection: A key component
in determining the severity of a contingency (S.) is the
structural integrity of the network. Any contingency, whether
N —1 or N — 2, that causes the fragmentation of the system
into multiple electrical islands is considered a severe failure
event. These islands may suffer from fatal generation-load
imbalances or the loss of the slack bus, potentially leading
to cascading collapse.

To evaluate this phenomenon, our methodology incorporates
a topological connectivity analysis after each contingency
simulation, based on graph-theoretic principles, in line with
graph-based frameworks for vulnerability assessment in power
systems [[16]], [[19].

The procedure is as follows:
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1) After simulating the disconnection of one or two ele-
ments, the numerical model of the network in its post-
contingency state is generated.

2) A graph-analysis algorithm (similar to a Depth-First
Search) is applied to the resulting topology to identify
all connected subgraphs.

3) The number of electrically isolated subnetworks (is-
lands) is then counted.

If the number of resulting islands is greater than one, the
scenario is automatically classified as a failure of maximum
severity (S, = 1), and its associated risk (R;) is computed
accordingly. This ensures that any loss of network integrity is
appropriately penalised in the final risk index.

Note on the applicability to N — 1 analysis: Although the
primary focus of this work is the exhaustive N —2 analysis, the
proposed multi-criteria severity assessment and probabilistic
framework remain highly valuable for single-outage (N — 1)
scenarios. Traditional N — 1 security analysis often relies
solely on steady-state limit violations. By integrating Optimal
Power Flow (OPF) feasibility, structural islanding detection,
and, critically, small-signal stability (SSS) evaluation into the
severity score (S.), the methodology provides a far more
rigorous safety assessment for NV — 1 events. Furthermore, by
utilizing component failure frequencies ();), the resulting R;
index elevates the N —1 evaluation from a purely deterministic
screening (where all severe failures are equally prioritized) to
a probabilistic risk ranking, allowing operators to focus on
the single component failures that contribute the most to the
expected annual system risk.

C. Probabilistic Risk Index Formulation

To move from a purely deterministic analysis (where all
failures are considered equally likely) to a probabilistic per-
spective, we weigh the severity of each contingency by its
frequency of occurrence. The key concept is that

Risk = Frequency x Severity.

For each network component ¢ (line, transformer, or gener-
ator), one essential reliability parameter is required: the failure
rate (\;), defined as the expected frequency of failures of
component ¢ (in failures per year) and related to the mean
time to failure (MTTF) by A\; = 1/MTTF,.

We define the expected annual frequency for each contin-
gency scenario:

1) N — 1 frequency (failure of ¢): the failure rate of the

component,

F, =\ (D

2) N -2 frequency (failure of ; and j): the average rate at
which j fails while ¢ is already out of service (assuming
independence),

Fij = Ai)j. )

It is essential to note that the frequency of an N — 1 failure
(e.g., 101 events/year) is several orders of magnitude higher
than that of an N — 2 failure (e.g., 10~° events/year). This
natural difference in frequency replaces the need for artificial
weighting to prioritize N — 1 failures.

The other important term for characterizing risk is severity.
In this work, we define the severity of the ¢-th element as a
binary variable whose value is obtained in the deterministic
analysis. Specifically, S; = 1 if the contingency of element
i leads to a failure (non-convergence of optimal power flow,
small signal instability, or undesired island formation), and
S; = 0 otherwise. When analyzing the failure of a second
element j, the severity is denoted as .S; ;, but the value is
obtained in an analogous manner.

The Risk Index for a component ¢ R; is computed as the
sum of all risk contributions (frequency X severity) from every
contingency scenario in which ¢ participates, as follows:

Ri=FiS;+Y Fi;Si;,
i

3)

where:

e R, is the risk index for component 7 (failure-events/year),
o F; is the N — 1 failure frequency of ¢ (i.e., \;),
e S; is the severity of the N — 1 failure of 4 (1 if failure,
0 otherwise),

o j denotes another component in the network (j # 1),

o F;; is the N —2 failure frequency of the pair (7, j) (i.e.,
AiNj),

e S; ; is the severity of the N — 2 failure of (3, j).

It is important to note that (3) uses a sum to aggregate risk.
The index R; does not represent the risk of a single scenario,
but rather the fotal risk contribution of component ¢ to the
system. It is therefore computed as the sum of the risk of the
N —1 scenario (failure of 7 alone) plus the sum of all individual
risks of the N — 2 scenarios in which 7 is involved (failure
of 7 together with any other component j). The resulting
R; has units of failure-events/year, representing the expected
frequency of systemic failures in which component ¢ is one of
the contributors.

This index R; captures the expected contribution of each
component to the total number of systemic failures per year.
A component with a high R; is therefore more critical for the
secure operation of the grid, either because it fails frequently
(high F}) or because its failure (alone or in combination) is
particularly destabilising (high >"S; ;).

III. HPC-ENABLED PARALLEL IMPLEMENTATION

Due to the large number of cases that had to be performed
in the N — 2 contingency analysis, the entire process has
been parallelized using the PyCOMPSs framework from BSC
[20]. PyCOMPSs [21], [22] is a Python-based programming
environment that facilitates the definition of parallel tasks and
their execution on distributed environments (HPC clusters,
cloud). In our case, each contingency analysis (optimal power
flow + stability analysis + island detection) is encapsulated
as an independent task (typically requiring around 30 seconds
depending on hardware conditions). Execution was performed
on the Nord4 cluster at the Barcelona Supercomputing Center,
allowing each contingency to be assigned a dedicated subset
of cores for a short period in a burst of computational power.

This approach drastically reduced the total computation
time: as resources are increased, the process scales almost



IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. X, NO. X, NOVEMBER 2025

linearly, in contrast to the exponential growth in the number
of contingencies as their order increases. In parallel, we
maintained a JSON file to store the results of each simulation
(stability outcome, power flow and optimal power flow con-
vergence, type of contingency—single or double—elements
involved and whether islands were formed, etc.) without
introducing I/O bottlenecks.
The general procedure is as follows:

1) Python functions that compute optimal power flows,
build the stability model for each contingency, and
detect islanding are written sequentially and decorated
as PyCOMPSs tasks.

2) The PyCOMPSs runtime builds a dependency graph and
schedules tasks across the available CPU cores.

3) After computation is completed, the results are collected
and aggregated (convergence, stability, island detection,
etc.).

This approach enables horizontal scaling of the exhaustive
analysis to networks of the medium size and, potentially, larger
systems, and lays the foundations for integrating a real-time
decision-support assistant into the system operation center.

IV. CASE STUDY AND SIMULATION TOOLS
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Fig. 1. Topological representation of the IEEE 118-bus test system.

This section presents the results of evaluating the proposed
methodology on the IEEE 118-bus network [[17], a classic
benchmark system for power system stability and vulnerability
assessment. The network consists of 118 high-voltage buses
interconnected by 175 transmission lines and 53 generators or
converters, and 11 transformers. Figure[T] presents a single-line
diagram of the network. For optimal power flow simulation
and contingency analysis we use VeraGrid [16], an open
Python environment that includes tools for AC optimal power

flow, OPF, and system dynamics. The base configuration
is obtained through an AC optimal power flow, and island
detection is performed using the VeraGrid framework. For
small-signal stability analysis in EMT [14(STAMP Tool), we
construct state-space linearized models of the entire system
after each single and double contingency, incorporating gen-
erator dynamic equations and voltage regulation controls.

Since the IEEE 118-bus test case is a benchmark system
lacking specific historical outage data, representative reliability
parameters have been adopted based on standard values found
in the literature [4f], with generator failure rates specifically
aligned with the IEEE Reliability Test System (RTS-96)
[5]. These default values, summarized in Table [, are used
to demonstrate the proposed methodology assuming typical
failure characteristics for high-voltage components. It should
be noted that, while uniform rates are applied here for this
benchmark study, the proposed framework fully supports
component-specific failure rates enabling the integration of
real operational data.

TABLE I
ASSIGNED RELIABILITY PARAMETERS
Component Failure rate (\;) MTTF
Lines 0.05 yr— 1T 20 years
Transformers 0.02 yr—1 50 years
Generators 0.10 yr— 1! 10 years

V. RESULTS AND DISCUSSION

A total of 57122 contingency scenarios were evaluated,
covering all N — 1 and N — 2 combinations considered in
the study. Of these, 51493 cases were classified as stable (or
secure) according to the adopted criteria (optimal power flow
convergence, absence of island formation and all eigenval-
ues with negative real part), which represents approximately
90.15 % of all analyzed scenarios. The remaining 5629 cases
were identified as unstable (around 9.85 %), either due to di-
vergence in the optimal power flow, the formation of electrical
islands or small-signal instability detected through eigenvalue
analysis.

These unstable situations correspond to contingency condi-
tions in which the system loses operational security. The fol-
lowing subsections examine the distribution of these failures,
the most relevant patterns observed and their implications for
the computation of the risk index.

All 57122 contingency cases were processed on the Nord4
HPC cluster [20]. We used 8 compute nodes, each with 48
CPU cores and 96 GB of main memory. Because the workflow
consists of independent contingency evaluations, it parallelised
efficiently across the cluster. The full analysis finished in about
five hours of wall-clock time, indicating that the proposed
method is computationally tractable at large scale.

It is worth noting that the method is embarrassingly par-
allel, and therefore its execution time can be reduced almost
linearly by allocating additional computational resources. This
aligns with the operator-support use cases discussed in the
conclusions, where time budgets on the order of 15 minutes
may be required.
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A. Contingency Coverage and Stability

A total of 57122 N — 1 and N — 2 contingency scenarios
were analysed, including symmetric inverted combinations to
ensure full coverage. The vast majority of these scenarios
remain stable, except for approximately 1390 cases that re-
sulted in numerical errors or non-convergent solutions. Most of
these problematic cases appear to be associated with situations
where the slack bus becomes isolated or located inside an
island, which suggests that an alternative slack assignment
could improve convergence reliability.

Among all N — 2 simulations, a large proportion (90.15 %)
converge successfully and show all eigenvalues with nega-
tive real parts, indicating small-signal stable post-contingency
operation. By contrast, 9.85% of scenarios exhibit at least
one eigenvalue with positive real part, revealing small-signal
instability or lead to the formation of one or more electrical
islands, which we classify as severe events since they can lead
to loss of reference, imbalance between load and generation,
or cascading collapse.

These critical cases represent the most relevant patterns
from the operational perspective, and they often correspond
to specific structural weaknesses in the network topology.

The computation of the risk index R; allows us to quantify
how much each network component contributes to the overall
likelihood of system failure. This provides a powerful tool for
prioritizing maintenance, designing protection schemes, and
preparing contingency strategies.

Overall, the IEEE 118 system shows a robustness level of
approximately 90.15 % under N — 2 analysis. However, the
identified critical scenarios highlight that certain combinations
of failures pose a significantly higher threat to operational
security. These results offer a practical path for grid operators,
who could focus their preventive actions on the small subset
of components that dominate the system-level risk.

B. Interpretation of the Risk Index Values

The computed Risk Index (R;) provides a quantitative
measure of the expected contribution of each component to
system-level failure events per year. Its interpretation is closely
tied to both the reliability parameters (failure rates )\;) and
the observed severity of the simulated contingencies (S.).
Understanding the order of magnitude of R; is essential for
assessing the operational relevance of the results.

A value of R; close to zero indicates that the component
rarely participates in severe scenarios. This may occur for two
distinct reasons: either the component has a low failure rate
(large MTTF) or its individual outage and the combinations in
which it participates do not lead to instability, island formation
or loss of optimal power flow convergence. In practical terms,
components with R; ~ 0 have negligible impact on global
security, even if they are part of the network topology.

On the other hand, values of the order of R; ~ 1.4 represent
a dramatically different situation. For example, a line with
R; = 1.472 contributes on average to almost one and a half
severe system failures per year when accounting for both
its N — 1 and N — 2 interactions. Since the failure rate of
transmission lines is relatively low (\; = 0.05 year™!), such

a high value of R; can only emerge when the component
is involved in a very large number of N — 2 contingencies
with S; ; = 1. This means that its structural position in the
network makes it systematically part of combinations that
reduce damping, induce instability or generate islands.

In this study, the resulting distribution of R; spans approx-
imately two orders of magnitude. The smallest values are
below 1073 failure events per year, typical of components
that neither fail often nor lead to severe outcomes when
they do. Intermediate values, in the range 1072 to 107!,
correspond mostly to generators and a subset of transformers
with moderate participation in unstable combinations. Finally,
the highest values, between 0.5 and almost 1.5 failure events
per year, are dominated by transmission lines that appear
repeatedly in severe N —2 combinations and whose reliability
parameters amplify the accumulated risk.

These ranges illustrate that system-level vulnerability is not
evenly distributed across the network. Instead, a small set
of components produces most of the expected annual risk,
while the majority contribute negligibly. This asymmetry is
critical for prioritising maintenance, targeted monitoring and
protection strategies.

C. Critical Components According to the Risk Index

Figures and [] show the risk index R; for lines, gen-
erators and transformers respectively. The combined ranking
across all elements is presented in Fig. 5| which consolidates
the global top 20 most critical components.

A clear pattern emerges in the combined ranking. The first
seven positions correspond to transmission lines (IDs 113, 17,
12, 134, 137, 173 and 172), all with nearly identical values
around R; ~ 1.47 failure events per year, followed closely
by Line 88 (R; ~ 1.45). This similarity is not coincidental.
It results directly from the uniform MTTF assigned to all
transmission lines (20 years, corresponding to a failure rate
Ai = 0.05 year—1). Since these lines also participate very
frequently in severe N —2 combinations, the resulting products
AiA; accumulate to extremely similar R; values. In these
cases, the blue bars dominate, showing that the overwhelming
majority of their risk contribution comes from N — 2 interac-
tions rather than from their individual N — 1 outage.

Below this top cluster, a second tier appears. Line 39 has
R; = 0.75, followed by a group of three transformers (IDs 10,
9 and 0) with values between 0.56 and 0.59. Again, this pattern
strongly reflects the reliability assumptions. Transformers were
assigned an MTTF of 50 years (\; = 0.02 year—!), which
yields lower N — 1 risk and reduced N — 2 frequency. The
resulting sharp drop between transmission lines and transform-
ers illustrates how reliability parameters directly influence the
probabilistic ranking.

Generators appear mostly in the lower half of the distribu-
tion. Generator 37 exhibits the highest generator risk (R; ~
0.41), almost entirely due to N — 2 contributions. Generator
41 (R; =~ 0.30) displays a significant red bar, showing that
even its individual N — 1 failure is classified as severe. The
remaining generators (IDs 3, 13, 24, 26, 19 and 48) show
much smaller R; values, reflecting both their lower frequency
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Fig. 2. Risk Index (R;) for transmission lines.
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Fig. 3. Risk Index (R;) for generators.

of participation in unstable N — 2 scenarios and their higher
assigned failure rate (\; = 0.10 year—!, MTTF 10 years). This
last point demonstrates an interesting phenomenon: despite
generators having a higher intrinsic failure rate, they contribute
far less to systemic instability than transmission lines. This
means that, in this particular system, structural vulnerability
is concentrated in the transmission network rather than in
generation assets.

It is important to note that although we use category-wide
default MTTF values for lines, transformers and generators,
the implementation allows assigning individual MTTFs to
specific components. This flexibility in the proposed method-
ology makes the risk index directly applicable to real systems
in which reliability is heterogeneous and asset specific. By
modifying element-level MTTF values, operators can imme-
diately observe how the risk profile shifts as a result of ageing
infrastructure, maintenance strategy or external environmental
Stressors.

The results demonstrate that system-level risk is highly
concentrated in a small subset of components. Most of the
expected annual failure events originate from combinations
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Fig. 4. Risk Index (R;) for transformers.
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Fig. 5. Combined Risk Index (R;) for all elements.

involving transmission lines, while transformers and genera-
tors play a secondary role. This highlights the importance of
double-outage analysis. Many of the dominant contributions
arise from N — 2 severity rather than N — 1 failures, which
reinforces the need to evaluate interactions that are entirely
invisible under a classical N — 1 operational criterion.

In practical terms, the risk index R; helps operators distin-
guish between components that are statistically more likely to
fail and those whose failures, even if rare, have disproportion-
ate consequences. It provides a unified and quantitative frame-
work to support asset prioritisation, maintenance planning and
real-time contingency assessment.

Although this study focuses on N — 1 and N — 2 contin-
gencies, real systems may experience more complex outage
patterns. Nonetheless, N — 2 contingency analysis combined
with small-signal stability assessment offers a solid foundation
for understanding real-world vulnerabilities. The structured
methodology allows scalable analysis and future integration
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into operational practice, which is particularly valuable in
contingency management.

This study demonstrates the feasibility of systematic N — 2
analysis with small-signal stability evaluation on a medium-
sized system. However, in larger networks the computational
workload increases substantially and additional phenomena
may arise.

A first-order probabilistic model has already been incorpo-
rated, using failure rates ()\;) to weight contingency severity
and compute the Risk Index (R;). This risk-based (frequency
X severity) perspective is more realistic than a purely deter-
ministic ranking.

Several improvements could be explored:

o Common-Cause Failures: The current model assumes
N —2 events are independent. In reality, storms or human
errors may cause simultaneous failures (e.g., two lines on
the same tower). Incorporating such probabilities would
yield a more accurate N — 2 risk estimate.

« Non-binary Severity: Severity is currently binary (S, €
{0,1}). A more refined model could treat severity as
continuous, e.g., load shed in MW, voltage depression in-
dices, or damping ratios, allowing differentiation between
mild and catastrophic failures.

o Uncertainty Analysis: Failure rates \; are uncertain.
A Monte-Carlo analysis on A would enable confidence
intervals for the risk ranking instead of a single point
estimate.

o Component-Specific Reliability: The developed frame-
work supports the assignment of specific MTTF values
to each individual network element. Although this study
applied uniform failure rates per asset class (lines, trans-
formers, generators) for standardization purposes within
the benchmark, the methodology is fully capable of
processing heterogeneous reliability data. This allows for
a more precise assessment in real-world scenarios where
components exhibit varying failure probabilities based on
their specific age, condition, or maintenance history.

In parallel, computational efficiency could be improved
using machine-learning methods or heuristics to reduce the
search space for preliminary screening of weak areas to filter
out minor contingencies before running a full powerflow AC
simulation. Further automation of islanding analysis (e.g.,
via reconnection heuristics or graph-theoretic tools such as
improved Dijkstra variants) would also be beneficial.

D. Operational Implications of N-1 and N-2 Failures

From an operational perspective, the distinction between
N —1 and N — 2 contingencies is essential for understanding
how the system should react to unexpected outages and how
operators can anticipate cascading failures.

An N — 1 failure corresponds to the outage of a single
element, such as a transmission line, a transformer or a
generator. Modern transmission systems are typically designed
to withstand any N — 1 event without losing operational
security, meaning that voltage limits must remain acceptable,
flows must continue to satisfy thermal limits and the sys-
tem must preserve small-signal stability. When an N — 1

contingency occurs, operators rely on predefined corrective
actions that are well established in operational procedures.
These actions may include generation rescheduling, activation
of reserves, topology reconfiguration, re-dispatch of power
flows through alternative paths or adjustments in voltage and
reactive support devices. In most systems, these actions can be
performed within a few minutes and do not require emergency
procedures. Therefore, an N — 1 failure is expected to be a
manageable event that does not compromise overall system
integrity.

In contrast, an N — 2 contingency represents the simul-
taneous outage of two components. This type of event is
much more challenging to handle because the consequences
are harder to predict and the system may not be designed to
tolerate such conditions under all operating states. An N — 2
failure may lead to severe overloads on neighbouring elements,
rapid voltage deterioration, loss of synchronism or the creation
of electrically isolated islands. In such cases, corrective actions
available to the operator become more restrictive. Actions
that are feasible after an N — 1 failure, such as rerouting
flows or re-dispatching generation, may no longer be sufficient,
especially if both outages affect major corridors or essential
components. Emergency measures, such as controlled load
shedding, temporary isolation of vulnerable areas or rapid
reserve activation, may be necessary to stabilise the system.

The key difficulty is that N — 2 failures often occur before
operators have enough time to react to the initial N —1 event.
If the system is already weakened by the first outage, the
second outage can push it beyond its stability margin, leaving
little time for corrective action. This highlights the importance
of identifying the specific N — 2 combinations that lead to
instability or island formation, as these combinations reveal
structural weaknesses that are hidden under classical N — 1
analysis.

In summary, NV —1 failures represent expected and generally
manageable operational disturbances, while N — 2 failures
expose the system to high-impact situations that may require
emergency actions and can escalate into cascading events.
Understanding how each component contributes to these two
classes of failures enables operators to prioritize preventive
strategies, reinforce vulnerable areas and prepare focused
response plans for the most critical multi-outage scenarios.

E. Real-Time Operator Support Tool

To bring the results of this analysis into operational practice,
we propose an interactive operator support tool. Its goal
is to integrate automated contingency calculations and risk
indices (R;) into a practical decision-support environment. In
near real-time, the tool would highlight the most vulnerable
components and suggest preventive or corrective actions. A
simple graphical interface could include a network topology
visualization, color-coded by element criticality (lines, trans-
formers, generators), along with alarms or notifications when
high-risk situations arise. This would facilitate rapid situational
awareness and informed decision-making.

The tool should be structured into several modules:

o Real-time data management: Interfaces with opera-

tional data sources (SCADA) to obtain the current grid
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state (flows, generation, voltages, topology). It continu-
ously updates internal models without interfering with
ongoing operation.

« Contingency simulation engine: Integrates VeraGrid and
HPC infrastructure to execute power-flow and small-
signal stability calculations quickly. It could run in the
background or on demand, automatically simulating the
most relevant N —2 scenarios or enabling operator-driven
what-if analysis.

o Risk index computation and visualization: Processes
simulation outputs to compute the criticality index R;
for each element in near real-time. It highlights recur-
ring unstable components and their associated severity,
marking them as “hot spots”. This information can guide
operational actions (e.g., protective relays adjustment,
control tuning, load reallocation).

¢ Recommendation and visualization panel: Provides an
intuitive interface displaying network maps or graphs
with risk indicators, lists of critical contingencies and
suggested actions. For example, the most critical line or
generator could be highlighted, with messages such as
“reduce output”, “activate reserves” or “redirect flows”
based on predefined rules or prior analysis. It may also
show time-evolution trends of critical eigenvalues or
global R; values.

A modular architecture could integrate these components
through APIs or Python libraries with VeraGrid, along with a
database for simulation logs and configurations. The essential
goal is collaborative operation: giving operators near real-time
guidance on the most dangerous multi-failure scenarios and
suggesting preventive measures.

This bridges the gap between offline analysis and opera-
tional tools, turning the methodology into actionable decision-
support.

VI. CONCLUSION AND FUTURE WORK

We have presented a structured methodology for identifying
critical components in the IEEE-118 system through exhaus-
tive N — 2 contingency enumeration, small-signal stability
analysis and islanding detection. Using VeraGrid and Python,
we modelled the impact of simultaneous outages on AC
optimal power flow and subsequently constructed linearized
EMT-based state-space models to assess dynamic stability. The
analysis reveals that a non-negligible fraction of the 57122
N — 1 and N — 2 combinations leads to instability or island
formation, exposing specific components as systematic drivers
of worst-case scenarios.

The proposed Risk Index (R;) integrates deterministic sever-
ity and probabilistic failure frequency into a unified metric,
enabling a meaningful ranking of components according to
their expected contribution to system-level risk. Results show
that risk is highly concentrated: a small subset of transmission
lines dominates the global risk due to both their structural
position in the network and the assumed reliability parameters
(MTTF), while only a few transformers and generators make
significant contributions. This aligns with the flexibility of the
method, which allows individual MTTF assignments and can
therefore adapt to real asset conditions in operational networks.

This probabilistic-deterministic framework offers a more
realistic perspective than traditional N — 1 security analysis,
highlighting the importance of N — 2 interactions that are
otherwise invisible to classical operational criteria. The ap-
proach demonstrates strong potential to evolve into a proactive
grid-security tool, capable of anticipating vulnerabilities and
guiding targeted interventions. Future improvements include
integrating real-world reliability data, exploring higher-order
contingencies (N — k with k£ > 2), incorporating non-binary
severity metrics and extending the methodology to larger or
time-varying network conditions.

A particularly relevant direction is the development of
a near real-time operator support system that embeds con-
tingency simulation, risk index computation and graphical
visualization. Thanks to HPC scalability and parallelisation,
the full computational workflow could be executed within
operational timeframes (¢ < 15 minutes), enabling informed
decision-making and early warning mechanisms in control-
room environments.

Overall, the proposed methodology not only deepens the
theoretical understanding of multi-contingency security in
networks such as IEEE-118 but also lays the foundation for
practical tools with direct applicability in industrial and re-
search settings. It creates a bridge between offline probabilistic
risk assessment and actionable real-time operational support,
while supporting a systematic, reproducible, quantitative way
to identify vulnerabilities, prioritize mitigations, support op-
erators, justify planning decisions, and explore the effects of
failures.
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