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Abstract

This paper presents a critical and practical approach to the evolution of distribu-
tion network reconfiguration algorithms, tracing their development from foundational
heuristic methods introduced in 1975 to contemporary state-of-the-art techniques.
The article systematically reviews seven different methodologies, including classical
heuristic algorithms (Merlin, Baran, and others), advanced meta-heuristic method-
ologies (particle swarm optimization (PSO) and genetic algorithms), and purely
mathematical approaches (MILP-based), analyzing their theoretical foundations, im-
plementation strategies, computational complexity, and performance metrics based
on extensive literature review and our own empirical testing.

Each methodology is assessed through standardized test systems, considering
multiple objectives such as power loss minimization and voltage profile improvement.
The comparative analysis reveals the strengths and limitations of each approach
under various network conditions and operational constraints. Furthermore, this
work provides significant value to the research community by offering an open-source
repository containing documented implementations of all reviewed algorithms. This
resource facilitates accessibility for newcomers to the field, promotes reproducible
research, and accelerates the development of next-generation distribution network
optimization solutions. The repository includes comprehensive documentation, test
cases, and performance benchmarks.

The Project TED2021-130351B-C21 (HP2C-DT) is funded by MICIU /AEI /10.13039
/501100011033 and by the European Union NextGenerationEU/PRTR.

Keywords: Distribution network reconfiguration, heuristic algorithms, greedy
methods, metaheuristic algorithms, genetic algorithm (GA), particle swarm
optimization (PSO) algorithm, mathematical methods, mixed-integer linear

*Corresponding author
Email address: ferran.bohigas@upc.edu (Ferran Bohigas-Daranas)

Preprint submitted to International Journal of Electrical Power & Energy SystemsNovember 28, 2025



programming (MILP)

Glossary A comprehensive list of terms used in this work.
e DNR : Distribution Network Reconfiguration

e GA : Genetic Algorithm

e PSO : Particle Swarm Optimization

e SBPSO : Selective Binary Particle Swarm Optimization
e MST : Minimum Spanning Tree

e BIBC : Bus Injection to Branch Current

e BCBV : Branch Current to Bus Voltage

e MILP : Mixed-Integer Linear Programming

QP : Quadratic Programming

1. Introduction

The electrical grid, recognized as one of humanity’s most complex and vital cre-
ations, is susceptible to failures that can affect vast populations and result in sub-
stantial economic repercussions. Having operated for over a hundred years in many
nations, the grid now confronts the challenge of high DER penetration. This includes
renewable energy generators and energy storage systems connected at various volt-
age levels. The increased variability and uncertainty caused by Distributed Energy
Resources (DERs) necessitates dynamic network reconfiguration to accommodate
fluctuating generation and consumption patterns and reduce power losses.

The electrical network is structured into three primary voltage levels: trans-
mission, sub-transmission, and distribution (comprising medium voltage and low
voltage). The transmission network, responsible for transporting large volumes of
energy over long distances, is both critical and resilient, owing to its redundant,
meshed topology and substantial investments in monitoring and control systems.
The sub-transmission network, also characterized by a meshed topology, provides
greater network reach, connecting the transmission network to the distribution level.



Finally, the distribution network, encompassing medium and low voltage infrastruc-
ture, includes numerous lines, varying distances, small switches, transformers, and
directly links the power infrastructure to consumers.

Distribution networks can be designed with meshed topologies, but are typically
operated radially by Distribution System Operators (DSOs) to simplify operation
and maintenance. This radial operation simplifies protection relay coordination,
reduces the complexity of protection devices, and limits short-circuit currents by
avoiding loops on the network. However, this radiality constraint further compli-
cates optimization, as solutions must adhere to Kirchhoff’s laws while preventing the
formation of loops.

The electrical network experiences significant energy losses, which represent a
substantial inefficiency. These losses are distributed across all voltage levels and arise
from both technical factors (e.g., resistive losses in cables, faulty connections, partial
discharges, and unbalanced loads) and non-technical factors (e.g., energy theft and
metering errors). Total power losses can reach up to 15% of the transferred energy,
with an average of 8% in Europe. For instance, in Spain alone, losses amount to
approximately 25 GWh annually [1], resulting in costs exceeding 2.5 billion euros
based on average energy prices [2]. Given that the majority of losses occur within
the distribution network, reducing these losses is a vital objective for Distribution
System Operators (DSOs) and Transmission System Operators (TSOs) alike, driven
by both economic and environmental considerations.

The increasing electricity demand, environmental regulations, and competitive
energy markets have led to transmission and distribution systems operating under
heavy load conditions, increasing concerns about distribution system losses. The
imperative to maintain acceptable power quality and enhance efficiency to maximize
economic benefits creates a strong incentive for the development and implementation
of loss minimization techniques and innovative operational practices.

Utilities employ Distribution Network Reconfiguration (DNR) to address these
challenges by adjusting network topology. This is achieved through manipulation of
sectionalizing (normally closed) and tie switches (normally open). This process can
optimize three different objectives, but our work focuses on reducing system losses:

1. Loss Reduction: Minimize resistive losses in conductors (e.g., I?R) by rerouting
power through shorter or higher-capacity pathways.

2. Load Balancing: Equalize feeder loading to prevent transformer overheating
and extend asset lifespan.

3. Resilience Enhancement: Isolate damaged sections during faults while maxi-
mizing supply to healthy zones.



Distribution network reconfiguration (DNR) plays a crucial role in optimizing
power systems [3][4]. Its objectives can include minimizing power losses[3], enhanc-
ing network stability, and effectively integrating the growing number of distributed
energy resources (DERs). DNR, formulated as a non-convex binary optimization
problem [5], presents significant computational challenges. Balancing solution accu-
racy with computational efficiency is therefore critical. This paper provides a com-
prehensive and accessible overview of DNR, examining its theoretical underpinnings,
algorithmic methodologies, and practical applications.

The combinatorial nature of Distribution Network Reconfiguration (DNR) is a
primary source of its NP-hard complexity. A network featuring (N) switches presents
(2V) possible configurations, quickly rendering exhaustive search impractical for
real-world systems. This exponential growth in the search space, combined with
the challenges of optimizing non-linear objective functions under various operational
constraints, classifies DNR as an NP-hard problem, as cited in [6].

The advent of smart grid technologies (e.g., RTUs, SCADA, AMI) has enabled
real-time DNR by providing granular load data and remote switch control. Yet, the
core challenge remains: how to solve this NP-hard problem fast enough for opera-
tional decision-making? The mathematical formulation of this operational decision-
making problem results in a Mixed-Integer Second-Order Cone (MISOCP) or Mixed-
Integer Quadratic Programming (MIQP) problem. Due to the inclusion of binary
variables, this renders it NP-hard [6] and precludes the use of efficient polynomial-
time algorithms. Consequently, alternative solution strategies must be explored to
achieve sufficiently fast computation. Early methods, such as the branch-and-bound
approach proposed by [4], were computationally intractable for large networks, while
heuristic approaches (e.g., Civanlar’s load-transfer method [7]) lacked optimality
guarantees. Current research predominantly focuses on metaheuristics (e.g., genetic
algorithms), which continue to grapple with convergence and scalability issues. This
paper aims to address these limitations through quantitative and qualitative analysis
and open-source implementations.

Achieving a solution within a reasonable timeframe represents a significant chal-
lenge that has been extensively studied, yet a definitive solution remains elusive. In
[4], the author introduced the first study on distribution feeder reconfiguration in
1975, employing a branch-and-bound method. However, this approach suffered from
two primary drawbacks: the lack of guaranteed solution convergence and the sub-
stantial computational burden required for real-world networks. In [7], the author
proposed a simplified yet innovative method for calculating loss reduction through
network reconfiguration, based on approximations of loss changes during load trans-
fer between feeders. However, this method did not guarantee global optimality,



and the final solution was dependent on the initial switch configuration. Subse-
quently, [8] presented a power-flow-minimum heuristic algorithm for distribution
feeder reconfiguration.

The heuristic methods were followed by metaheuristic methods, starting with
genetic algorithms (GA) and followed by nature-based methods such as Ant Colony
and Particle Swarm Optimization (PSO) [9], among others, as discussed later in this
paper.

Together with algorithm and methodology papers, several reviews on DNR have
been published over the years [10][11][12], with the most recent one from 2023. How-
ever, their approach has been to list and compare different methods based on the
authors’ reported results. A different approach has been taken by [9], focused on
metaheuristic algorithms, providing a detailed description of a genetic algorithm
and a comprehensive comparison of most published papers in the field.

Instead of comprehensively enumerating existing references, which has been done
previously by other authors [9][12], this paper provides an in-depth, engineer-oriented
review of five decades of research on distribution network reconfiguration (DNR).
Specifically, it examines seven methods, along with their open-source implementa-
tions in Python.

The contributions of this paper are:

1. Systematically classifies DNR methods, emphasizing their optimization struc-
ture.

2. Provides detailed descriptions of, at least, one algorithm from each family, to
introduce the different methodologies in a simple and clear manner.

3. Compares algorithmic trade-offs between computational efficiency and solution
quality.

4. Includes open-source implementations to bridge theory and practice.

5. Enhances the implementation of metaheuristic methods by initializing the
search with results from faster heuristic algorithms, thereby achieving faster
and superior network optimization.

6. Compares the systems over long time series periods, to better quantify the
global energy savings achievable through the implementation of dynamic DNR
policies.

The remaining sections are structured as follows. Section 2 describes the problem
statement, by describing the mathematical and physical foundations of the problem,
detailing the power flow equations and the radiality constraint imposed by most
distribution system operators. Section 3 details the mathematical formulation of the
problem. Section 4 classifies and describes the various methodologies proposed in



the literature. Section 5 presents the obtained results and the comparison between
the different methods. Finally, Section 7 presents the conclusions of this paper.

2. Understanding the problem

2.1. Distribution Network Reconfiguration Objectives

Distribution Network Reconfiguration (DNR) aims to optimize system operation
for enhanced reliability and economy, primarily addressing four objectives: Power
Loss Reduction, Voltage Profile Optimization, Load Balancing, and Service Restora-
tion. Of the seven methods implemented, six were initially dedicated to Power Loss
Reduction, with only one’s initial formulation incorporating Voltage Profile as main
objective [13]. In contrast, our implementation has expanded these metaheuristic
methods to be multi-objective, thereby enabling the optimization of both power
losses and voltage profile.

2.1.1. Power Loss Reduction
Minimizes resistive losses (Pss) through optimal path selection:

N,
min Y I}R, Vk € N, (1)

k=1
where [} is the current on line k, which is constrained by its line ampacity I}, < I},
Ry, is the resistance of that line, and /N; is the number of lines in the electrical network.

2.1.2. Voltage Profile

A significant effect of the radial topology is increased voltage loss due to voltage
drops in the cables, so maintaining the voltages within the DSO’s limits can be
another objective in the optimization process:

‘/i S [mey Vmaw] VZ S Nb (2)

where V; is the voltage at bus i measured in pu, N, is the number of buses in the
electrical network, while V,,;, and V,,,, are the maximum and minimum voltages

defined by the DSO.

2.1.3. Load Balancing

When aiming to reduce system losses or maintain the voltage profile, there’s a
risk that some lines might be configured to operate very close to their maximum
capacity, while others carry only a small percentage of their load. It’s important for
the DSO (Distribution System Operator) to keep all lines as balanced as possible.
This increases the system’s resilience against events like load increases or line failures,
which could otherwise lead to dangerous situations.



2.1.4. Service Restoration
The critical post-fault objective restores power to the maximum number of cus-
tomers (with energy) while isolating faults. Mathematically, this maximizes:

Ny

max »  w;; (3)
i=1
where w; is the customer weight, z; € {0, 1} indicates service status at bus i, Vi € Ny,
and NV, is the number of buses in the electrical network.

2.2. Solution Strategies for Distribution Optimization

Distribution Network Reconfiguration (DNR) offers a means to optimize network
operation, yet it is not the sole solution available to utilities. Enhancements can
similarly be achieved during the planning stage through the inclusion of additional
shunt capacitors or distributed generation (DG) assets; however, these alternatives
typically entail greater CAPEX expenses, while DNR primarily entails OPEX ex-
penses.

2.2.1. Shunt Capacitor Placement

This approach [11] improves systems by compensating reactive power and stabi-
lizing voltage. This method requires installing fixed capacitors at specific locations.
Benefits include reduced losses and better voltage profiles, though these goals may
sometimes conflict. Limitations include high upfront costs, static nature, need for
placement analysis, and large incremental adjustments.

2.2.2. DG Allocation

DG Allocation [11] strategically positions distributed generation sources close to
consumers, which minimizes energy transmission distances and consequently reduces
power losses. Furthermore, DGs enhance voltage profiles by increasing voltage levels
at the far ends of the network and alleviating cable loading. However, the integration
of DGs can introduce potential challenges related to reverse power flow. Similar to
Shunt Capacitor Placement, implementing DG Allocation necessitates substantial
financial investment and represents a static infrastructure solution.

2.2.3. Distribution Network Reconfiguration (DNR)

It alters network topology via switch exchanges, offering flexibility at minimal
cost. It reduces losses, improves voltage profiles, and isolates faults. The challenge
lies in finding optimal configurations due to non-convex discrete problems that con-
ventional methods cannot easily solve. Implementation needs no new infrastructure,
using existing switches automated in smart grids.



The authors are aware of the limited life of switches when they operate under
load. Future work will investigate adapting the base strategies to account for the
available electrical elements, as mentioned in Section 7.

2.8. Intuition behind the DNR methods

To clearly exemplify the DNR problem, we will use the IEEE 14-bus system,
shown in Fig. 1. This network comprises 14 buses, 20 lines, 5 generators, and 11
loads, and includes 7 loops. The objective of DNR methods is to achieve a radial
architecture by opening 7 switches to eliminate the loops, selecting the switches to
open or close, such that the total network losses are minimized.

We will denote the line names as follows: the line connecting buses 6 and 12 is
named '6_12_1". If multiple lines connect the same two buses, the trailing number
will enumerate them.

e

J_LE

Figure 1: IEEE 14-bus case, with all switches closed and losses equal to 13.34 MW

If we choose a random combination of switches, Fig. 2, such as disconnecting
the lines ['6_12_1°, ’13-14_1°, "2_4_1°,°4_-5_1°,74_7-1",°2_.3_17,’1_2_1"], the losses will be
115.23 MW with a voltage range between 1.09 and 0.815 p.u.



(a) Non-optimal configuration with losses equal to (b) Near-optimal configuration with losses equal to
115.23 MW. 28.91 MW.

Figure 2: IEEE 14-bus case non-optimal and near-optimal configurations.
Disabled lines in red.

Executing the method formulated by [4] chooses the lines ["2_5_17, "3_4_1°, "}_5_1",
4710, 4917, '10-11-1°, °12_153_1°], Fig. 2. This solution achieves 28.91 MW of
losses, maintains network radiality, and improves the voltage profile to a range of
0.958 to 1.09 p.u., resulting in lower losses and enhanced network parameters.

3. Mathematical Formulation and Constraints

Distribution Network Reconfiguration (DNR) can be formulated as a traditional
optimization problem requiring the definition of specific terms. Subsequently, we will
outline the optimization equations and discuss the various approaches employed by
authors to calculate network losses using different power flow calculation methods.

3.1. Optimization Framework
The DNR problem is defined as:

min  f (x) (objective function, i.e. network losses) (4)
st. g(x) =0 (Power flow equations) (5)
h(z) <0 (Operational limits) (6)
r € {0,1}¥ (Switch states) (7)
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3.2. Power Flow Models

The selection of the equations to be used in the optimization objective function (4)
and constraints (5,6,7) is a key decision in the solution process, as different authors
have chosen different methods, affecting both the resolution time and accuracy:

3.2.1. Kirchhoff’s Power Flow Equations

The power flow equations, defined by Kirchhoff’s laws [14], are applicable to any
network regardless of its topology. They can be solved by methods like Newton-
Raphson [15], among others. However, authors have applied a variety of relaxations
in order to obtain solutions for the DNR problem [3][5][16], as explained in Section
4.2 and Section 4.3:

Py =" |Vil|Vi|(Gir, cos 0y, + By sin ;) (8)

k
k

where P; is the active power flow between buses ¢ and k, @); is the reactive power
flow between buses i and k, V; is the voltage at bus i, V}, is the voltage at bus k, Gy
is the conductance of the line between buses ¢ and k, B;, is the susceptance of the
line between buses ¢ and k, #;; is the phase angle difference between buses 7 and k.

3.2.2. DistFlow Equations

DistFlow equations [17] are a set of equations based on Kirchhoff’s laws, specif-
ically tailored to the characteristics of distribution grids, such as their radial or
weakly meshed topology. They can be solved using the recursive Forward (10)-
(12)/Backward (13)-(17) sweep method, which allows for a non-derivative solution
and faster computation.

Py :Pi_ri]:?‘j;ﬁ_PLH—l (10)

Qiv1 = Qi — %Pf;fﬁ — Qrit1 (11)

VR, = VE 2+ i@+ (rF ) (12)
Py =P+ rPQ‘;QZ + Py, (13)

)
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P2+ Q7

Qi—1 = Qi + x; vz T Qri (14)
, , P? 4+ Q2
VEL = V0 +2(riP + @Q + (7 + :v?)Zv,le (15)
P =P+ Py (16)
Qi = Qi+ Qui (17)

where P; is the active power flow between buses ¢ and 7 + 1, ; is the reactive power
flow between buses i and i + 1, Pp; is the active power flow for the loads at bus 1,
Qr; is the reactive power for the loads at bus ¢, V; is the voltage at bus ¢, r; is the
resistance of the line between buses 7 and 7+ 1, x; is the reactance of the line between
buses ¢ and i + 1.

During the backward sweep, powers/currents are aggregated node by node from
the network extremities to the substation, while during the forward sweep, voltages
are calculated from the slack bus at the main substation to the feeder extremities.

A simplified version was formulated by [3] to achieve even faster solutions, by
not considering the quadratic terms of the losses during the forward (10)(11) and
backward passes (13)(14), and later considering the voltage equal to 1 p.u. in the
final power losses calculation.

3.2.8. Direct Load Flow (DLF)

The method proposed by [18], is based on the bus-injection to branch-current
(BIBC) and branch-current to bus-voltage (BCBV) matrices. It is solved by a fast
recursive process, achieving a non-derivative solution simply by multiplying matrices
based on the admittances and the network’s interconnection:

[B] = [BIBC][/] (18)
[AV] = [BCBV||BIBC][I] (19)

3.2.4. Summary of Power Flow calculation methods

Power flow solutions present a trade-off between accuracy and computational ex-
pense. Kirchhoff’s laws when solved by Newton-Raphson method achieve the highest
accuracy but at the highest computational cost. In contrast, Direct Load Flow (DLF)
equations offer the fastest solution at the expense of lower accuracy. Positioned in
the middle, the DistFlow method provides a balance of both computational effort
and accuracy.
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Considering that solving the power flow equations is the most time-consuming
task within network reconfiguration methods, as this operation can be done iter-
atively for tens or hundreds of times, the choice of how to solve these equations
directly impacts the solution time. For this reason, some authors choose to apply
certain relaxations, assumptions, or simplifications to the equations to improve the
power flow solution time. The most common approaches include:

e Assuming cable losses are negligible compared to loads, allowing them to be
omitted from the equations.

e Setting voltages in all nodes to 1 per unit (pu).

e Considering only the real part of the equations (as commonly done in older
works).

In heuristic methods, the equations are manipulated as part of the decision-
making process [3]|[7], whereas metaheuristics typically use an external solver to
obtain the objective function result. Mathematical approaches [5][16] utilize these
Kirchhoft’s equations as constraints or objectives, as detailed in Section 4.2.

Each author selects the objective function based on their decision criteria, with
the most common being the minimization of power losses in the network, but other
criteria could include voltage margins, switching costs, or a combination of weighted
objectives.

3.3. Network radiality

Special attention has been given to the definition of radiality in the network and
its translation into mathematical equations that can be easily incorporated into the
decision-making process.

A radial network requires that there are no loops in the topology, which can be
mathematically defined as:

Nlines = Nbuses - Ncon (20)

where Ny, is the number of available lines, Ny, is the number of buses and N,,,
is the number of connections between the network and the main transmission or
subtransmission grid.

However, this condition alone is not sufficient; it also requires that all buses are
energized.

In heuristic and metaheuristic approaches, the radiality constraint is verified by
equation (20), while ensuring that no nodes are disconnected or de-energized after
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each decision or selection step. In contrast, mathematical optimization methods
require the radiality constraint to be integrated into a mathematical equation, as
defined by [5] and [19]. This point will be discussed in more detail in Section 4.

3.4. Graph Theory

Electrical networks can be modeled as undirected graphs, G(V,E), where nodes
correspond to network buses, and edges represent the lines connecting them [20].
This representation allows graph optimization methods and algorithms to be readily
applied to electrical systems. For the Distribution Network Reconfiguration (DNR)
problem, the most suitable algorithms are those designed to find the Minimum Span-
ning Tree (MST)[13], such as Kruskal’s [21] or Prim’s [22] algorithms. These ensure
the radial structure of the distribution system while optimizing the paths based on
various criteria, such as line impedance or the current flowing through the lines,
which are used as edge weights.

4. Methods Review

4.1. Solution Approaches Classification

The evolution of DNR methodologies can be categorized into four distinct paradigms,
as detailed in Table 1
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Table 1: Methods summary

The foundational
methods in DNR employ
rule-based approaches

e Branch exchange
algorithms

Fast computation (polynomial time
complexity)

Heuristic that utilize network e Loop-based algorithms Intuitive physical interpretation 13)[4][7][13]
Methods physics and practical .
rules derived from e Minimum Spanning Tree Local optima convergence
network-specific based methods Dependency on initial conditions
knowledge
e Genetic Algorithms (GA)
Nature-inspired e Particle Swarm No guarantee of global optimality
Metaheuristic ;Iiltilcrﬁlizjgzgetezilglgsesa Optimization (PSO) Fitness evaluation via power flow 19][23][24]
Methods o e Ant Colony Optimization solutions
and swarm intelligence
approaches (ACO) Population-based search
e Simulated Annealing (SA)
e Mixed-Integer Linear .
Programming (MILP) NP-hard problem complexity
i imizati . . . Approximation/relaxation
Mathematical | Exact Optlle'at.IOIl o Mixed-integer quadratic teIc)Eni o ofter/l e
Prog.ram- n-lethods pI‘OV.ldlIlg programming (QP) q q [5][6][16]
ming rigorous solutions Incorporation of radiality
e Second-order cone constraints (Eq. 20)
programming (SOCP) 4
Increased computational cost
during the training stage
. . y Superv1s§d and Extremely fast solution in run time
Emerging data-driven unsupervised neural i
Data-driven | techniques that have networks operation [25][26]

algorithms

been gaining prominence
in the last few years [9]

e Reinforcement learning for
dynamic reconfiguration

Capability to learn and generalize
complex non-linear relationships

Black-box nature with limited
explainability
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Figure 3: Distribution Network Reconfiguration Methodologies

4.2. Mathematical techniques

The most straightforward approach to solving the DNR problem would be to
use mathematical methods based on the power flow equations. However, its mixed-
integer nonlinear nature, which renders it a highly combinatorial problem, makes its
solution a challenging task.

Mathematical methods possess a key advantage compared to heuristic and meta-
heuristic techniques (which will be discussed in Sections 4.3 and 4.4): they can obtain
globally optimal solutions if the problem can be transformed into a convex problem
through relaxations. oreover, they do not require any tuning or random initialization
that could lead to suboptimal or inconsistent solutions.

One of the earliest references for solving the DNR problem using mathematical
optimization processes is presented in [27], published in 1996, which employed linear
programming. The formulation is given by

[AlPy] = [P] (21)

15



16%
Heuristics

Figure 4: Percentage of the different DNR methods on the technical literature, based on the
information given in [9] and other papers

where A is the node-to-branch reduced incidence matrix, Py is the branch flow vector,
and [P] is the nodal injection vector, excluding the reference node.

If there are N buses, only N-1 out of L lines need to be connected (20). However,
the [A] matrix will change for each choice of N-1 lines while maintaining radiality and
connectivity. The article establishes resistive losses as the objective function, focusing
solely on real power. Its main challenge lies in maintaining radiality, achieved through
the use of an extended matrix.

Instead of purely linear programming, other approaches such as [28], which focus
on communication networks but propose theoretical foundations applicable to distri-
bution networks, suggest using the branch-and-bound method. This search method
is adapted to the binary nature of communication networks and can also be ap-
plied to energy distribution networks, emphasizing efficient pruning of all possible
configurations.

The DNR problem can utilize methods developed for Optimal Power Flow (OPF),
a well-established field aiming to minimize one or more objective functions, typically
to minimize the generation costs. However, in the case of the DNR, power losses are
used as objective function. However, the added complexity lies in determining the
status of switches, represented as binary variables, which makes it a Mixed-Integer
Non Linear Programming (MILNP) problem.

Many authors focus on applying relaxations to the quadratic equations of power
flow, converting them into linear equations suitable linear programming solvers. This
includes Mixed-Integer Linear Programming (MILP), which integrates power flow
equations and network operational constraints.

Two prominent works in the field, [29] and [30], propose different approaches using
Piecewise Linear Functions (PLF) to linearize the quadratic equations that relate

16



power, voltage and current. This linearization process, however, adds complexity to
the solution when combined with binary variables defining switch status. PLF's can
effectively linearize these equations, enabling their use in MILP formulations. In [29],
the author introduces a novel method for modeling switches based on the definition
of all possible paths between nodes and substations. Each path is mathematically
represented by a binary variable, ensuring radiality while simultaneously defining
switch statuses.

In later papers, the process has been refined and expanded to more sophisticated
methods, such as mixed-integer conic programming [5]. Nevertheless, the primary
focus and concern remains on the radiality constraint, which is the most challenging
to represent mathematically, as highlighted in [19]. Other papers [31] propose the
use of planar graph representations to ensure radiality while employing a Mixed-
Integer Quadratic Programming (MIQP) formulation. Recent works, such as those
published in 2024 [32] and [33], continue to explore these challenges.

The necessary and sufficient conditions for radiality in a graph, and thus for the
existence of a spanning tree, are rigorously established through the calculation of the
determinant of the branch-to-node incidence matrix [27]. Nevertheless, mathemat-
ical optimization techniques are generally incapable of incorporating determinants
directly as constraints, thus necessitating their expression through alternative math-
ematical formulations. One of the main contributions to this topic is presented in
[19], where the authors define radiality as satisfying two simultaneous conditions:

e Condition 1: The network configuration must form no loops.

e Condition 2: The network configuration must have all buses connected.

In [5] and [33], the authors propose using variables B;; and Bj; to indicate power
flow direction. These variables satisty:

Bij+ B;; =1 (22)

where B;; = 0 indicates no flow from bus i to bus j. When both, B;; = 0 and Bj; = 0,
it means there is no current in the line, so it is disconnected.

An interesting contribution to the problem was provided by [16] and [30]. The
authors proposed adding a binary signal within a simplified set of equations, along
with piecewise linearization, to enable the use of MILP. They also introduced a “path-
to-node” incidence concept, which allows for the compact and efficient formulation
of both radiality and electrical constraints.
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4.2.1. QP and SOC implementations

In our work, we have based our implementation on [6], where the authors pro-
pose a set of equations to define radiality similar to [5], but also introduce a third
variable y;; that defines the state of the line or its associated switch. The problem
is then solved by two different approaches: first by Quadratic Programming (QP),
without considering the physical limits, such as minimum bus voltage or maximum
line current, and later, with Second-Order Cone Programming (SOCP), where the
physical constraints are added to the set of constraints.

The most significant contribution of this proposal [6] is the mathematical defini-
tion of radiality, where three key variables are introduced:

e z;; and z;;: To define the current flow direction
e y;;: To indicates whether the current is active (switch closed)

Alongside the radiality constraints, the power flow equations are formulated with
different relaxations for each approach:

e For Quadratic Programming (QP), the equations consider only resistance (a
simplification of the full impedance model).

e For Second-Order Cone Programming (SOCP), the equations are extended to
incorporate the full impedance model.

In our implementation, we used Python with the Pyomo library, [34] [35] for
formulating constraint and objective functions, and employing the [36] solver to
obtain the final solution.

4.3. Heuristic techniques

Heuristic methods leverage domain-specific knowledge of distribution systems to
efficiently find feasible configurations, though they typically yielding locally optimal
solutions. These approaches offer computational advantages over metaheuristics by
incorporating electrical system insights directly into their decision-making processes,
as will be explained in this section.

4.3.1. Methodological Categories
The literature classifies heuristic DNR methods into three principal approaches:

e Branch Exchange: Iterative switch swapping from an initial configuration.

— Operates on an existing radial topology.
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— Uses sensitivity metrics for switch selection.
e Loop Cutting: Systematic opening of switches in meshed networks.

— Begins with all switches closed.

— Prioritizes branches by current magnitude.

e Greedy Graph Methods: These methods utilize methods like Kruskal’s [21] or
Prim’s [22] algorithms to find a minimum spanning tree or radial configuration
based on electrical parameters such as cable impedance or current or power in
a given configuration. The decision-making process in these methods can be
specifically tailored by the author or implemented using standard algorithms
like Prim’s or Kruskal’s.

The first proposed heuristic method was a loop cutting algorithm by [4], which
selects branches for opening based solely on their minimum current. After selecting a
branch, the algorithm ensures no nodes remain disconnected and repeats the process
(see Fig. 5). This method was later refined by [37], incorporating AC power flow
calculations and network constraints, for particular use during network planning
phase.

Two other key studies, conducted by [7] in 1988 and [3] in 1989, were based on the
Branch Exchange method. These works innovated both in heuristic reconfiguration
methods and, more importantly, in power flow estimation techniques. These advance-
ments were crucial at a time when computational capacities were limited, accelerat-
ing decision-making processes. In [3], the author dedicates a significant portion to
defining simplified DistFlow equations, as explained in Section 1. Later, in 1992, [§]
improved the method for selecting the lines to be opened.

The Branch Exchange algorithm has continued to be studied and updated to this
day, as evidenced by recent papers such as [38], where authors use BIBC/BVBC
matrices to speed up load flow calculations (similar to Civanlar’s approach [7]), and
[39], published in 2023.

Another area of study involves greedy methods for achieving minimum spanning
trees based on graph theory, which aim to select the optimal branches for opening or
closing based on localized decision parameters. These methods employ algorithms
like Prim’s and Kruskal’s, as seen in [40] and [41], where authors use decision pa-
rameters ranging from line impedance to line active power.

This paper has selected and implemented five different heuristic methods for
comparison, as they demonstrate fundamentally different approaches to solving the
problem. This contrasts with mathematical methods, where changes primarily in-
volve the description of constraints while the core problem remains the same:
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Loop Cutting: [4]

Branch Exchange: [3]

Branch Exchange: [38]

Greedy Minimum Spanning Tree: [13]

e Brute Force: [20]

4.3.2. Loop Cutting

The first implemented method in this review is the proposal by [4] in 1975 (shown
in Figure 5). This method starts with all switches closed; the algorithm then calcu-
lates the network power flow and lists all branches in ascending order based on their
current. It then chooses branches starting from the one with the lowest current and
disconnects them sequentially, ensuring that the resulting network maintains radial-
ity. After disconnecting a branch and generating a valid network configuration, the
power flow is recalculated, and the process repeats until the number of open lines
equals the number of buses minus one (20).

4.3.3. Branch Ezxchange

The selected Branch Exchange method is based on the algorithm proposed by
[38], represented in Fig. 6, and which builds upon earlier proposals by [3] and [7].
The main feature of the algorithm, compared to the other implemented algorithms,
is that its optimization objective is to improve the voltage profile rather than directly
reducing losses. It starts with a valid radial configuration and iteratively exchanges
tie switches. It compares the voltages at the nodes connected by the tie switch,
and the algorithm opens the line connected to the node with the higher voltage.
One of the key elements in [38] is the use of BIBC/BVBC matrices for efficient
power flow calculation in distribution networks. The authors start with a network
configuration compliant with constraints and perform a power flow calculation to
determine the voltages at each node. They then analyze each tie switch by comparing
the voltages at its connected nodes. Depending on whether the sending or receiving
node has the higher voltage, the algorithm decides on the exchange of the tie switch to
optimize network performance. The power flow is recalculated after each change, and
if the system performance improves, the change is reatined; otherwise, the algorithm
proceeds to the next tie switch.
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configuration in an urban power distribution system” by Merlin et al. [4]
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4.3.4. Greedy MST Method

The authors in [13] propose a graph-based method using Kruskal’s algorithm
to find the minimum spanning tree (MST) for distribution network reconfiguration.
The algorithm begins by calculating the power flow with all switches closed and as-
signs weights to graph edges based on the inverse of the active power of the branches.
Kruskal’s MST algorithm is then applied to these weighted edges, which progressively
adds edges to the spanning tree based on their weights, ensuring that no cycles are
created. This process is illustrated in Fig. 7. The authors experimented with various
weighting policies and found that using the inverse of active power produced com-
parable results to more complex metaheuristic algorithms such as genetic algorithms
and harmony search.

The implementation performed in the present paper is based on [13] but includes
the option to use different MST algorithms, such as Prim’s or Boruvka’s, while the
weight can be chosen between the current or the power on the lines. The best
results have been obtained with current on the line, with a significant improvement
compared to using active power.

An alternative heuristic approach is proposed by [20], that employs a modified
Minimum Spanning Tree (MST) method to exhaustively search all valid spanning
trees in a network using a brute-force strategy. This ensures that the optimal radial
solution is identified. Morton’s method simplifies power flow calculations by convert-
ing the model into a constant-current load-based representation. This modification
facilitates a more efficient evaluation of network configurations while retaining the
advantages of a spanning tree approach.

4.4. Metaheuristic Methods

4.4.1. Methodological Categories

Metaheuristic algorithms constitute a significant portion of research in distribu-
tion network reconfiguration (DNR), accounting for over 58% of studies according
to [9].

Metaheuristic methods iteratively optimize problems without using derivative
information, thereby simplifying computational processes. They often emulate nat-
ural processes like genetic evolution or the behaviors of animal collectives (e.g., bird
swarms, ant colonies) to find near-optimal solutions.

The pioneering metaheuristic algorithm for DNR was the Genetic Algorithm
(GA), which evolves an initial population through crossover, mutation, and selec-
tion based on a fitness function to minimize or maximize objectives. GA was first
applied to DNR in 1992 [42] and gained popularity in the 2000s with refinements
such as faster power flow calculations [43] and multi-objective approaches [23].

23



Obtain all the network data

v

Power flow execution with all switches
are closed

v

The inverse of the active power of each
branch is set as edge weights

v

Sort all the edges/branches based on
their weight, from the smallest
to the biggest

v

Define an empty Tree (T)

v

Walk through the edges list, if the nodes

(u,v) connected by the minor edge are

still not connected, the edge is included
inthe T

While the new
configuration =T
has <n-1 edges

The Tree is a
Minimum Spanning Tree (MST)

Figure 7: Flow diagram of ” A minimal spanning tree algorithm for distribution network
configuration” by [13]

24



Population-based algorithms such as Ant Colony Optimization (ACO) and Par-
ticle Swarm Optimization (PSO) iteratively improve solutions based on candidate
positions and values, converging towards optimal solutions.

Other metaheuristic algorithms applied to DNR include Ant Colony Optimiza-
tion, Simulated Annealing, Immune Algorithms, Plant Growth Simulation Algo-
rithm, Honey Bee Mating Optimization, Artificial Bee Colony Algorithm, and Grav-
itational Search Algorithm, among others. Recent studies have explored newer algo-
rithms such as Harris Hawk Optimization and Jaya Algorithm [44][45].

Despite their effectiveness, metaheuristic algorithms heavily depend on chosen
parameters and the initial conditions, which can influence their performance signifi-
cantly.

For this study, the following two metaheuristic methods were selected:

o Genetic Algorithm (GA) [23]: Utilized for its effective multi-objective opti-
mization approach.

e Selective Binary Particle Swarm Optimization (SBPSO) [24]: Chosen for its
capability in discrete solution space optimization.

4.4.2. Genetic Algorithm

The paper by [23] introduces a traditional Genetic Algorithm (GA), illustrated
in Fig. 8, and described in detail below.

The algorithm begins by generating an initial population of N,,, candidates.
Specifically, Ng. candidates are derived from an initial radial configuration using
the Successive Branch Exchange Algorithm (SBEA) based on [3]. The remaining
candidates are generated by a greedy minimum spanning tree method employing
Kruskal’s algorithm, where each branch is assigned a random weight for each candi-
date to ensure a random exploration of the action space.

Once the initial population is established, each candidate’s fitness function is
evaluated. The fitness function is defined as the inverse of the power loss plus one
to prevent division by zero. Candidates are sorted based on their fitness values from
highest to lowest, and the top N elite candidates are selected to proceed. The
remaining candidates are replaced with new candidates generated through crossover
operations between elite candidate pairs, followed by mutations with a probability
of (Prut)-

This iterative process continues for Ny, iterations, and the candidate with the

highest fitness is selected as the solution to the Distribution Network Reconfiguration
(DNR) problem.
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4.4.3. Selective Binary Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm was first introduced by [46]
and has been applied to the Distribution Network Reconfiguration (DNR) problem
since the 2000s. Initial works such as [47] utilized the Binary Particle Swarm Op-
timization (BPSO) formulation, which was later enhanced by [24] by introducing a
technique for efficiently selecting the line to disconnect. Comparative studies such
as [48] provide valuable insights into different PSO implementations.

The algorithm proposed by [24], depicted in Fig. 9, starts by gathering all network
information, defining configuration parameters, and generating a random list of valid
candidates. Each candidate adheres to radiality constraints (i.e., no loops and all
nodes connected), and is represented by a list of open switches. The algorithm defines
the search dimension as the number of loops to be opened, and the search space is
defined by the available switches at each loop.

Once the initial candidates are defined, the fitness function, which represents
network losses, is evaluated through power flow calculations. The best global candi-
date is identified as the one with lowest losses.

Subsequently, the algorithm computes the velocity of each candidate using the
equations originally proposed by [46]:

it = wujy + err (pby — w3y) + cara(gbl — a3y) (23)
wid =+ (24)
1
sigmoid(vF) = 25
g ( id ) 1+ eXp(—deJrl) ( )
where id = 1,2,...,n represents the population or set of swarm particles, and

w, ¢y, Co, 11, T9 are inertia, acceleration and randomness constants, respectively, and
k the iteration up to N, iterations.

The authors proposed a modification to search within the action space, composed
of switches available at each loop, by adjusting the sigmoid equation of BPSO (eq.
25), resulting in Selective Binary Particle Swarm Optimization (SBPSO):

1

sigmoid(v& ™) = d,, 26
g ( id ) 1+exp(—vfd+1) ( )

where d,, represents the search space in the loop, ensuring that the selection of

the new line to be opened is conducted appropriately.

27



sq1  if sigmoid(vi™) < 1
sqp  if sigmoid(vf™) < 2

ot = {sgs  if sigmoid(vfy ™) < 3 (27)

sq, if sigmoid(vi™) < d,,

After selecting a new line to open, the fitness function is recalculated. If any
candidate improves upon the global candidate’s fitness value, that candidate becomes
the new global solution.

This iterative process continues for Ny, iterations, with the final global candidate
determined as the algorithm’s solution.

5. Results Comparison and Discussion

5.1. Simulation Scenarios

The compared papers were implemented in Python, made open-source [49] and
evaluated across five distinct distribution network scenarios:

e 16-bus network ([7], 1998), a distribution network composed of 16 buses, 3
substation connections, 20 MV lines, 14 loads and 5 generators

e 33-bus network ([3], 1989), Fig. 10, a distribution network composed of 33
buses, 1 substation connection, 37 MV lines and 33 loads

e (9-bus network ([3], 1989), a distribution network composed of 69 buses, 74
MV lines and 48 loads

e 118-bus network ([50]IEEE standard), a segment of the American Electric

Power system (in the U.S. Midwest) with 118 buses, 175 MV lines 118 loads
and 54 generators.

e Simbench Urban Network ([25] 1-HVMV-urban-2.203-0-no_sw): a realistic rural
urban network with 196 buses, 215 lines, 194 loads, and 219 generators (biomass,
hydroelectric, PV, and wind). This scenario included one-year time-series data
(15-minute intervals) for load and generation, providing a robust test case for
dynamic network reconfiguration (DNR) aimed at achieving energy savings.
Figure 11
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Table 2: Execution performance for the IEEE 118 buses case

Method Author Technique Objective Losses
Heuristic Merlin Loop Cutting Losses 5692 kW
Heuristic Baran | Branch Exchange | Losses 497 kW
Metaheuristic | Jakus GA + Baran Losses 222 kW
Metaheuristic | Khalil SBPSO Losses | no solution
Heuristic Salkuti Voltage profile Voltage 613 kW
Heuristic Montoya MST Losses 497 kW

5.2. DNR for Power Losses Optimization results

The 16, 33, 69, and 118 bus cases were tested under nominal power conditions,
while the Simbench Urban Network case was evaluated across three representative
weeks (starting on days 10, 90, and 180), yielding valuable insights.

For the 16 and 33 bus networks, most algorithms (heuristics and metaheuristics)
achieved near-optimal solutions, validated against a brute-force method [20] (Fig.
12). However, results varied significantly for larger networks. Notably, [23]’s genetic
algorithm (GA) consistently delivered superior or optimal performance across all five
cases, indicating its robustness compared to topology-dependent algorithms.

Merlin’s heuristic [4] approach exhibited the poorest performance, followed by
Salkuti’s and Baran’s algorithms. While Baran’s method showed promise in time-
series analysis, Khalil’s SBPSO proved highly sensitive to initial loop/line selection,
limiting its general applicability.

Table 3: Execution performance for the 33 buses case with nominal power

Algorithm Type Number of PF Calculations | Execution time (ms)
Merlin Heuristic 20 121
Baran Heuristic 8 4
Salkuti Heuristic 10 5
Montoya Heuristic 1 3
Morton Heuristic > 10.000 Several hours
Khalil Metaheuristic 240 3460
Jakus Metaheuristic 298 8410

5.3. DNR for Voltage Profile Optimization results
Fig. 12 illustrates the losses and minimum voltage for the 33, 69, 118, and
Simbench Urban Networks, while Table 3 presents the 33-bus voltage profile. Jakus’s
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Figure 12: Evolution of the minimum voltage when minimizing the power losses, for the studied
methods on the four analyzed scenarios.
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Figure 13: Voltage profile for the 33-bus case

GA effectively maintained minimum voltage, albeit at a high computational cost
(Table 3), exceeding heuristic methods by an order of magnitude.

5.4. DNR for multiobjective optimization results

Extending the analysis presented in Table 3, a multiobjective optimization of
Jakus’s GA was conducted, balancing losses and minimum voltage (Fig. 14). Results
for the Simbench Urban Network case indicated optimal performance with a fitness
function emphasizing voltage profile (80-90%) over losses (10-20%).

5.5. Timeseries analysis results

The Simbench Urban Network time-series analysis (Fig. 15) compares algorithm
performances over three one-week periods. Jakus’s GA, initialized with the previ-
ous step’s solution, achieved a 28% loss reduction (14.1 seconds), making it seven
times slower than Montoya’s MST (4 ms), which achieved a 15% reduction. Khalil’s
SBPSO, however, yielded only a 4% reduction, while Baran’s achieved 18%, again
highlighting topology dependence.

5.6. DNR results summary

Khalil’s SBPSO performance was significantly affected by initial loop search space
definition. Restricting tie lines to single loops hindered optimal solutions, while
allowing multiple loops caused convergence issues. This sensitivity underscores the
need for robust initialization strategies.
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Figure 14: Pareto front between losses and minimum voltage for Simbench Urban Network case,
using Jakus’s genetic algorithm, under its initial conditions. Average of 100 executions.

Table 3 and Fig. 12 present the 33-bus system results (with Fig. 12 showing
broader network comparisons), with particular emphasis on the number of power flow
calculations (NPF) required for convergence. Unlike computational time—commonly
used in literature but heavily dependent on hardware specifications—we propose NPF
as a more robust and universal performance metric. This approach follows [39], who
demonstrated that timing comparisons become obsolete with hardware evolution,
while NPF remains valid across different computing platforms.

A summary of the tested methods can be seen in Table 4

6. Open Source Implementation

The implementation of the different algorithms tested in this paper was performed
in Python. It is supported by GridCal [51] to load electrical grids from ’.m’ files
downloaded from [52] or imported from the Simbench project [25]. Pyomo [34][35]
and IPOPT [36] were used for the mathematical methods implementation.

The master class for the DNR library is DistributionNetworkReconfiguration,
which groups calls to all implemented methods and manages the GridCal grid.

The code is available in Github [49] and organized in folders as follow:

34



Initial configuration vs PSO_loss = 4.4% Initial configuration vs MST_loss = 15.366%

9 2 4 2
5‘ ) §‘ 2
g ¢ 2
time time
Initial configuration vs Jakus_TL_loss = 26.649% Initial configuration vs Jakus_OW_loss = 29.384%
2 4
S Ao g
£ % < é
time time
Initial configuration vs Salkuti_TL_loss = -91.04% Initial configuration vs Salkuti_OW_loss = -515.438%
4 i =
. oo | s il 5
< %.E L ME Y ‘l|“ I , 32
s M =redaram Lon, M &
time time
Initial configuration vs Baran_TL_loss = 17.825% Initial configuration vs Baran_OW_loss = 18.438%
@ @
o S w 2
"} 1 n
5 g g g
5 g € g
& g
time time
Initial configuration vs Merlin_TL_loss = -214.942% Initial configuration vs Merlin_OW_loss = -214.942%
4 2 g
& FoS 3
5 £ = £
time time

Figure 15: Methods performance for a one-week time series for the Simbench Urban Network
case, using hourly samples.

from GridCalEngine.IO.file_handler import FileOpen

gridGC = FileOpen("case69.m").open()

dnr = DistributionNetworkReconfiguration (gridGC)

radiality = GC_utils.CheckRadialConnectedNetwork (gridGC)

disabled_lines = dnr.Solve(method="Khalil", NumCandidates
=10)

Listing 1: Example of SBPSO algorithm for the 69-bus case
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Table 4: Methods summary

Optimal but computationally infeasible for networks

Brute Force exceeding 33-buses.

Merlin Historically significant but suboptimal.
Baran Deterministic, topology-dependent branch exchange.
Montoya Fast MST (Kruskal, line current weighting).
Salkuti Topology-sensitive branch exchange, voltage
profile-focused.
-
;{él;lélos Fast, initialization-dependent.
Jakus’ GA Robust, computationally intensive.
Quadratic Programming (QP) can obtain absolute
Jabr’s QP optimal solutions, but our implementation has proved

impractical for large networks (due to performance and
convergence issues).

e src : Contains the source code for the DistributionNetworkReconfiguration
class and all implemented methods, with each method in its own file.

e Examples: Jupyter Notebook (.ipynb) files with examples demonstrating the
usage of the DistributionNetworkReconfiguration class. The files are com-
mented following the philosophy of Literate Programming [53].

e Results: Files used to generate the results presented in this paper.

e docs: Markdown-based documentation.

7. Conclusions

This comprehensive study investigates and implements the most representative
methodologies published for solving the Distribution Network Reconfiguration (DNR)
problem, from its inception in 1975 with Merlin’s pioneering work [4] to the latest
state-of-the-art advancements. The research encompasses a broad spectrum of solu-
tion approaches, including heuristic, metaheuristic, and mathematical optimization
methods, providing detailed analysis of their theoretical foundations, algorithmic
characteristics, computational strengths, and practical limitations.

The primary objective of this research and its accompanying open-source library
is to facilitate the entry of new engineers and researchers into the DNR domain
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by providing a comprehensive overview of existing methodologies. Furthermore, this
work aims to inspire the development of novel optimization approaches that can assist
utility companies in achieving superior operational performance through enhanced
power loss reduction and improved voltage profile management across distribution
networks.

Based on our extensive comparative analysis of the reviewed methodologies, we
identified the hybrid approach combining genetic algorithms with heuristic optimiza-
tion proposed by Jakus’s[23] as demonstrating superior overall performance char-
acteristics, despite requiring longer computational processing times. Our findings
indicate that while traditional heuristic methods consistently produce reasonable
solutions for small-scale distribution networks, their performance significantly dete-
riorates when applied to larger, more complex grid topologies, highlighting the need
for more sophisticated optimization strategies.

This study presents a comprehensive review and practical implementation of dis-
tribution network reconfiguration methodologies, with all results and source code
made publicly available via an open-source repository [49]. It should be noted that
minor discrepancies between our computational results and those reported in the
original publications may occur due to differences in implementation details, pro-
gramming languages, computational platforms, or algorithmic parameter settings.

Our primary contributions to the field, which have been rigorously evaluated
across five distinct test scenarios using comprehensive time-series analysis and multi-
objective Pareto front visualization techniques, include:

e Enhanced Montoya’s Minimum Spanning Tree (MST) Algorithm: Developed
an improved version incorporating line current weighting factors to better re-
flect real-world electrical characteristics and operational constraints.

e MST-Based Initialization Strategy: Implementation a novel initialization method-
ology for metaheuristic algorithms using minimum spanning tree principles,
which significantly improves convergence speed and solution quality.

e Multi-Objective Fitness Function Framework: Designed and implemented ad-
vanced multi-objective optimization frameworks, specifically adapted for Jakus’s
Genetic Algorithm and Khalil’s Social-based Particle Swarm Optimization (SBPSO),
enabling simultaneous optimization of multiple competing objectives such as
power losses, voltage deviations, and network reliability indices

The research methodology employed rigorous benchmarking procedures using
standard IEEE test systems and real-world distribution network data, ensuring the
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reliability and practical applicability of the proposed improvements. Statistical anal-
ysis of the results demonstrates significant performance enhancements over existing
approaches, particularly in terms of solution quality and computational efficiency for
medium to large-scale distribution networks.
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