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Abstract

Digital twins are transforming the way we monitor, analyze, and control physical systems, but designing architectures that balance
real-time responsiveness with heavy computational demands remains a challenge. Cloud-based solutions often struggle with la-
tency and resource constraints, while edge-based approaches lack the processing power for complex simulations and data-driven
optimizations.

To address this problem, we propose the High-Precision High-Performance Computer-enabled Digital Twin (HP2C-DT) refer-
ence architecture, which integrates High-Performance Computing (HPC) into the computing continuum. Unlike traditional setups
that use HPC only for offline simulations, HP2C-DT makes it an active part of digital twin workflows, dynamically assigning tasks
to edge, cloud, or HPC resources based on urgency and computational needs.

Furthermore, to bridge the gap between theory and practice, we introduce the HP2C-DT framework, a working implementation
that uses COMPSs for seamless workload distribution across diverse infrastructures. We test it in a power grid use case, showing
how it reduces communication bandwidth by an order of magnitude through edge-side data aggregation, improves response times
by up to 2x via dynamic offloading, and maintains near-ideal strong scaling for compute-intensive workflows across a practical
range of resources. These results demonstrate how an HPC-driven approach can push digital twins beyond their current limitations,
making them smarter, faster, and more capable of handling real-world complexity.

Keywords: Computing continuum, Digital twin, HPC, Industry 4.0, Cyber-physical systems, Edge computing, Cloud computing,
IoT, Artificial intelligence, Power systems

1. Introduction probabilistic analysis, synthetic data generation, and model
training while still keeping the fast response times needed for
real-time decisions at the Edge. HPC stands out from general
cloud computing or private clusters by offering dedicated high-
performance resources with specialized parallel processing and
high-memory bandwidth. This is especially important when
quick results are needed, like in short-term simulations that help
drive immediate decisions. With HPC, the system can scale its
resources as needed, ensuring that even demanding computa-
tions can be handled efficiently without slowing down critical
operations.

The HP2C-DT reference architecture is designed with three
primary focuses: Information Technologies/Operation Tech-
nologies (IT/OT) integration, computational infrastructure, and
data management. The IT/OT integration dimension ensures
that edge components can be deployed on diverse hardware
and operate with minimal latency. From an infrastructure per-
spective, the system dynamically assigns computational tasks to
edge, cloud, or HPC resources based on urgency and computa-
tional load. A relevant innovation is the adaptive orchestration
of tasks, where time-sensitive computations execute immedi-
ately at the Edge, while less urgent workloads are scheduled
asynchronously on available HPC or cloud resources. At the
same time, in terms of data management and communication,
HP2C-DT balances computation with data exchange, ensuring
that messages and sensor updates are transmitted between edge

Digital twins have emerged as powerful tools to integrate
the physical and digital worlds, enabling advanced monitoring,
control, and decision-making. Although much research has fo-
cused on their simulation and visualization aspects, less atten-
tion has been paid to integrating the computational demands of
high-fidelity modeling with the need for rapid decision support.
This gap becomes particularly relevant in highly distributed
systems that need both low-latency responses at the Edge and
high computational power to operate.

Therefore, a significant challenge in digital twin architec-
tures is bringing together fast response times with massive com-
puting capacity. Many existing approaches rely on centralized
cloud solutions, which can be inadequate for real-time appli-
cations due to network latency. On the other hand, purely
edge-based solutions lack the computational power needed
for complex simulations and large-scale optimizations. The
present work addresses these issues by proposing a novel ref-
erence architecture for digital twins, the High-Precision High-
Performance Computer-enabled Digital Twin (HP2C-DT), and
an accompanying process framework for its implementation.

A key contribution of our reference architecture is bring-
ing High-Performance Computing (HPC) into the loop, allow-
ing the digital twin to take on heavy computational tasks like
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and cloud nodes without overwhelming the network. The pro-
posed architecture handles this through a combination of heart-
beats to track node status and local aggregation of measure-
ments.

The proposed reference architecture defines a blueprint for
the core components, their interactions, and best practices to
develop digital twin systems. Building on this foundation, this
article introduces the HP2C-DT framework, which has been de-
signed and implemented to bridge the gap between the refer-
ence architecture and real-world applications. The framework
not only specifies the enabling technologies and provides de-
tailed guidelines for their integration, but also includes a work-
ing implementation that simplifies the development of digital
twins.

At its core, the HP2C-DT framework integrates edge com-
puting, remote cloud components (cloud or on-premises), and
HPC resources into a cohesive system. A key element enabling
this integration is COMPSs [1], which orchestrates parallel and
distributed execution. Taking advantage of the function-driven
approach of the reference architecture, each node—whether at
the Edge or in the Cloud—runs a COMPSs agent that coordi-
nates with peers to offload tasks dynamically. This offloading
mechanism also includes HPC resources, which allow heavy
computations to be assigned to high-performance computing
clusters when needed.

A use case of HP2C-DT is in electrical grids, where edge
nodes are distributed over vast geographical areas. In such envi-
ronments, sending data to a central cloud node for analysis is in-
feasible due to strict latency constraints. Instead, real-time fault
detection and response must occur directly at the Edge, while
HPC resources handle computationally intensive tasks such
as predictive maintenance, load forecasting, and probabilistic
risk assessment. Similar scenarios arise in industrial automa-
tion, where production line adjustments require millisecond-
level reaction times while complex optimization models refine
scheduling and resource allocation, and in autonomous trans-
portation networks, where real-time navigation depends on lo-
cal edge decisions supported by large-scale traffic simulations
and data-driven route optimization. Building on the reference
architecture and implementation framework, we develop a pro-
totype of a digital twin for power grids to test HP2C-DT’s main
features in a real-world scenario.

This article is structured as follows. Section 2 provides a
concise review of related work on digital twin architectures,
their connection to the computing continuum, and their use of
HPC resources. Section 3 outlines the proposed reference soft-
ware architecture, followed by Section 4, which examines the
most important features of the reference architecture in detail.
Section 5 introduces the HP2C-DT framework, extending the
reference architecture for implementation. Section 6 presents
an experimental use case in power systems, demonstrating the
benefits of HP2C-DT. Finally, Section 7 provides concluding
remarks.

2. Related work

Michael Grieves [2] first introduced the concept of a digital
twin in 2014 as a virtual representation of a physical product,
rooted in the management of the product life cycle. This in-
volves a continuous exchange of data: the physical object sends
real-time information to its virtual counterpart, while simula-
tions or optimizations performed on the virtual object influence
the physical object. In 2017, Grieves expanded this concept
by introducing Digital Twin Instances, which are individual
virtual models of physical products; Digital Twvin Aggregates,
which combine multiple instances; and the Digital Twin Envi-
ronment, a space where digital twins interact in multiphysics
simulations [3].

A more recent definition, provided by the CIRP Encyclo-
pedia of Production Engineering [4], describes a digital twin
as a digital representation of a unique product, system, or ser-
vice that captures its characteristics, properties, and behaviors
throughout various phases of the life cycle. The digital twin
operates through models, information, and data, and enables
real-time monitoring, optimization, and decision-making.

Jones et al. [5] further refined the concept of a digital twin
by identifying its key elements. A physical object or entity,
such as a machine or system, has a corresponding virtual object
or entity that digitally represents it. These entities exist within
physical and virtual environments, with different levels of fi-
delity affecting their accuracy. This fidelity can be measured
through the number of parameters transferred between physical
and virtual objects. The state of a digital twin depends on the
measured parameters, such as temperature or voltage, which are
collected through metrology. The digital twin also includes pro-
cesses for updating the physical or virtual model based on new
data. The physical-to-virtual connection captures real-world
data through sensors, while the virtual-to-physical connection
applies insights from simulations to control real-world devices.

2.1. Twinning

Less emphasis has been placed on how digital twins con-
tribute beyond visualization and monitoring—specifically, in
decision-making and model refinement. In Jones et al.’s terms,
these capabilities fall under twinning, which refers to the syn-
chronization of physical and virtual instances through metrol-
ogy (reading an entity’s state) and realization (modifying an
entity’s state). The frequency of twinning varies by applica-
tion, with high-speed synchronization being critical in fields
like power grids.

However, Jones et al. detach twinning from virtual pro-
cesses. Virtual processes provide computational tools such as
optimization, prediction, simulation, and analysis, but these
tools are usually not involved in (a) updating the virtual instance
when discrepancies arise between expected and measured pa-
rameters or (b) determining how the digital twin should respond
to such discrepancies in the physical system. Since synchro-
nization relies on continuous data exchange and analysis, the
interaction with these computational tools is essential. Yet, how
often and in what ways virtual processes should influence syn-
chronization remains unclear.



2.2. Edge computing perspective in digital twins

Integrating digital twins with the computing continuum of-
fers advantages for low-latency applications. Qi and Tao [6]
propose a hierarchical architecture that combines edge, fog,
and cloud computing to optimize data processing across lay-
ers in digital twin-based shop floor environments. This archi-
tecture enables real-time control at the Edge, medium-latency
data integration at the fog level, and large-scale analysis in the
Cloud, and addresses challenges such as bandwidth constraints
and latency. Building on this foundation, Groshev et al. [7]
introduce the concept of Digital Twin as a Service (DTaaS),
highlighting the role of edge computing, network function vir-
tualization (NFV), and 5G technologies. Their study explains
how edge computing minimizes end-to-end latency by offload-
ing tasks closer to physical devices, while 5G provides ultra-
reliable low-latency communication (URLLC) for real-time ap-
plications like remote control and visualization. Together, these
studies show how the computing continuum meets the strict
low-latency and high-reliability needs of digital twins in Indus-
try 4.0.

2.3. Cloud-computing and HPC

Another important part of digital twins is how they handle
heavier computational load, usually leaning on cloud comput-
ing for its flexibility and ease of access. This processing power
is needed for running complex simulations, real-time data anal-
ysis, and predictive modeling, and allows digital twins to mir-
ror and anticipate the behavior of physical systems. But, while
the Cloud works well in many cases, it can fall short when ex-
treme performance is needed. High-Performance Computing
(HPC), on the other hand, offers more power and efficiency and
can handle the heaviest workloads with higher speed and accu-
racy [8], yet it is still not widely used for digital twins. This is
why integrating HPC into digital twin architectures has gained
traction as computational demands for high-fidelity modeling
and predictive analytics grow. The Digital Twin Engine (DTE)
proposed by the European Centre for Medium-Range Weather
Forecasts (ECMWF) [9] exemplifies this trend, leveraging Eu-
roHPC supercomputers to deploy climate digital twins for sim-
ulations and data handling. The DTE emphasizes code opti-
mization for accelerator technologies like GPUs, providing ef-
ficient use of HPC resources while maintaining interoperability
across distributed systems. Similarly, recent work by Ares de
Parga et al. [10] proposes a parallel Reduced Order Modeling
(ROM) workflow using COMPSs [1, 11] on HPC clusters. In
general, we see that many efforts focus on using HPC resources
for highly complex, physics-based simulations, but there is still
a lack of close integration of these resources into the digital
twin life cycle from a software perspective.

2.4. Orchestration of asynchronous workflows

Task orchestration plays a key role in managing the diverse
resource demands in this area. Nie et al. [12] propose a multi-
agent, cloud-edge orchestration framework that uses the digital
twin and the Industrial Internet of Things (IIoT) concepts to im-
prove distributed production control. Their approach combines

cloud-based production models with self-adaptive strategies to
handle dynamic exceptions and make better use of resources.
However, while the framework works well for distributed man-
ufacturing, it mainly focuses on static scheduling and does not
explore real-time synchronization across distributed resources
in depth. Similarly, Nguyen et al. [13] introduce a digital twin
orchestration framework with features such as federation, trans-
lation, brokering, and synchronization, demonstrating its use in
smart city applications such as hotspot prediction and driving
assistance. Their work highlights the benefits of cross-domain
collaboration and federated learning for Al model sharing, but
it remains mostly conceptual and does not address performance
optimization in resource-limited environments or large-scale in-
dustrial settings. In contrast, Ares de Parga et al. [10] take a
more hands-on approach, evaluating the COMPSs framework
for orchestrating complex workflows in heterogeneous environ-
ments. This way, the authors effectively manage task dependen-
cies and resource allocation in distributed systems, making it a
promising option for digital twin orchestration.

2.5. Gaps and novel contributions

Existing architectures often isolate HPC, edge, and cloud
resources, resulting in inefficiencies in workflows that demand
both low-latency responses and intensive computation. Al-
though domain-specific projects optimize HPC for modeling
and simulation, they do not incorporate real-time decision-
making at the Edge. Conversely, hyper-distributed platforms
prioritize the edge-cloud balance but omit HPC for large-scale
simulations. This article proposes a reference software archi-
tecture that addresses these gaps by introducing HPC in the
loop within a parallel and distributed orchestration component,
together with IT/OT integration at the Edge.

3. HP2C-DT reference architecture

The HP2C-DT reference architecture is structured into three
layers: Edge, Cloud, and HPC, as shown in Figure 1. The ar-
chitecture is designed so that the Edge layer focuses on the un-
derlying infrastructure, while the Cloud layer provides a global
perspective of the digital twin. Meanwhile, the HPC layer sup-
plies the raw computational power needed for intensive pro-
cessing.

The Edge layer manages physical devices and local com-
puting resources. It operates autonomously, processing infor-
mation locally to meet real-time requirements. This layer han-
dles immediate control tasks and real-time monitoring, ensur-
ing quick responses to changes in the environment. For exam-
ple, sensor measurements collected by edge nodes are trans-
mitted to the Cloud layer using a publish-subscribe messaging
model (sensor measurement lines in Figure 1). At the same
time, actuation commands from the Cloud are sent back to spe-
cific edge nodes through point-to-point messaging (actuation
lines in the figure). This dual communication mechanism en-
sures efficient data collection together with precise control.

The Cloud layer acts as the brain of the system, integrat-
ing various components such as virtual representations of de-
vices, database storage, computation tools, and user interfaces.
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It collects and processes information from multiple edge nodes,
storing measurements in a time series database, and trigger-
ing alarms when needed. The Cloud layer also facilitates ad-
vanced computations like simulations and probabilistic analy-
ses by leveraging its access to the full digital twin representa-
tion. Its messaging middleware manages communication with
edge nodes, while other modules handle tasks like real-time
monitoring (via heartbeat signals), alarm logging, and expos-
ing APIs for external services.

Finally, the HPC layer provides high-performance comput-
ing capabilities for resource-intensive tasks that exceed the ca-
pacity of the Edge or Cloud layers. HPC systems consist of
several computing nodes (generally servers with high com-
puting power and a large amount of memory) interconnected
with a high-speed network and designed for parallel processing
of complex problems. These systems often incorporate spe-
cialized hardware accelerators—GPUs (Graphics Processing
Units), FPGAs (Field-Programmable Gate Arrays), or TPUs
(Tensor Processing Units)—to solve specific problems. Some
cutting-edge HPC systems also integrate emerging technologies
like quantum computing, which leverages quantum mechan-
ics to solve certain types of problems exponentially faster than
classical computers.

HPC systems outperform the Cloud in several ways: they
offer heterogeneous hardware better suited to application re-
quirements, lower-latency and higher-bandwidth networking,
and optimized software workflows without virtualization over-
head. For organizations with consistent high-performance com-
puting needs, in-house HPC can also be more cost-effective
than indefinite cloud rentals. In addition, stricter user control
in HPC environments enhances data privacy and security by
keeping data within the organization and reducing exposure to
external threats. Unlike cloud platforms, HPC systems restrict
direct service deployment, instead relying on job schedulers
like SLURM, which streamline access control and ensure ex-
clusive resource allocation. However, this scheduling mecha-
nism means executions may not start immediately if resources
are unavailable.

Beyond the capabilities of each layer, the reference archi-
tecture orchestrates computation across them to balance real-
time responsiveness and large-scale processing. Computation
tasks are referred to as functions and are classified based on la-
tency requirements: synchronous functions execute locally for
immediate responses, while asynchronous functions are sched-
uled across edge, cloud, or HPC nodes depending on resource
availability. The Parallel and Distributed Execution component,
present on every node, manages this orchestration. For com-
putationally intensive tasks such as large-scale simulations or
optimizations, it offloads execution to the HPC layer.

4. Key architectural principles

The HP2C-DT reference architecture balances real-time re-
sponsiveness at the Edge with large-scale computational capa-
bilities. This is achieved by integrating operational and com-
putational layers to handle execution, communication, and data

flow. This section details the core architectural principles that
enable this integration.

4.1. IT/OT integration

A key aspect of the proposed reference architecture is
its interaction with the physical environment within a digital
twin. For this, the architecture follows a taxonomy of digi-
tal twin entities that mirror physical and logical components.
The Edge layer is responsible for interacting with physical
objects, collecting sensor data, and executing control actions
on them. To achieve this, edge nodes maintain an image of
each connected physical device—a physically bound digital ob-
Jject—which keeps a record of the device data received and can
communicate with it to apply actions when possible. In con-
trast, the virtual digital object in the Cloud layer provides a
more approximate image of the devices. This way, the Edge
layer handles a smaller volume of information and remains
close to the physical world, while the Cloud layer aggregates
data from numerous edge nodes with a lower burden. Conse-
quently, approximation and aggregation are required to man-
age scalability, reduce communication overhead, and extract
higher-level insights from distributed edge data sources to the
cloud node. Section 4.3 offers more information about such
mechanisms.

Following this logic, each physical object in the digital twin
is associated with a physically bound digital object and a virtual
digital object. Within HP2C-DT, and from a software perspec-
tive, these are referred to as a device. A device functions as a
sensor if it produces a measurement stream, an actuator if it
performs actions that modify the physical environment, or both
if it supports both roles.

Figure 2a illustrates the hierarchical abstraction of devices.
The first conceptual layer consists of the Sensor, Device, and
Actuator abstractions, which define the core functionalities
required for interaction within the architecture. All sensor-
based devices must support triggering predefined sequences of
actions when configured to do so, while actuator devices allow
actions to be performed on the hardware when required. The
second layer introduces domain-specific abstractions, such as
Abstract Sensor 1 and Abstract Actuator 1, which re-
fine the base abstractions by specifying data types and measure-
ment magnitudes. Finally, the implementation-specific layer
contains concrete classes that inherit from the previous abstrac-
tions, integrating hardware- and manufacturer-dependent fea-
tures. In the figure, Concrete Sensor 1 extends Abstract
Sensor 1, while Concrete Actuator 1 extends Abstract
Actuator 1. This layer defines low-level interactions with
hardware, including communication protocols and data han-
dling. Concrete devices also inherit from vendor-specific
classes, such as Manufacturer Device 1, which encapsu-
lates hardware drivers and communication details for a specific
device family.

Consider the digital twin of a power grid. As represented
in Figure 2b, the voltmeter sensor would be represented as an
abstract class, Voltmeter, in the domain-specific layer, inher-
iting from the Device and Sensor abstractions. The Device
abstraction handles properties such as labeling and positioning
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Figure 2: Hierarchical abstraction of digital twin objects.

to ensure proper system integration, while the Sensor abstrac-
tion standardizes data collection and processing across different
sensors. A concrete implementation of the voltmeter abstrac-
tion would extend this structure by integrating manufacturer-
specific communication details. In the example of Figure 2b,
the concrete class Modbus Voltmeter would implement the
Modbus Device class, applicable in cases where multiple de-
vices use the Modbus protocol [14], a common industrial com-
munication standard.

This hierarchical structure enhances flexibility and simpli-
fies system extensibility. It enables a clear separation of con-
cerns, from defining high-level functionalities to managing de-
tailed hardware implementations. This approach also facilitates
supporting devices with varying capabilities and those from dif-
ferent manufacturers, without overwhelming the system design.
The taxonomy of digital twin objects, based on their proximity
to the physical datum, along with the hierarchical structure of
their software implementations shown in Figure 2, forms the
basis for IT/OT integration. Together, they help map opera-
tional data from physical devices to computational processes in
the digital twin.

4.2. Data processing management

Functions are modular computation tasks defined by the
user in the HP2C-DT architecture. Depending on urgency re-
quirements, they can be configured as synchronous or asyn-
chronous. Because they share the same execution model, they
can be used in a similar way at both edge and cloud nodes.
Synchronous functions execute locally and immediately on the
requesting node. Asynchronous functions, managed by the Par-
allel and Distributed Execution component, are scheduled and

distributed across the digital twin infrastructure in a Function-
as-a-Service (FaaS) manner, executing on available resources
or offloading to peer nodes. They may consist of a single task
or form complex workflows with multiple dependent or nested
tasks, each assigned to a node that meets its constraints. In ad-
dition to being synchronous or asynchronous, functions can be
triggered in different ways depending on system needs:

o Frequency-based trigger (onFrequency): Executes peri-
odically at a fixed interval.

o Event-based trigger (onRead): Executes when a new
measurement arrives from a specified sensor. It can be
configured to run after a set number of measurements in-
stead of every individual reading.

o Change-based trigger (onChange): Executes only when a
sensor’s state changes, reducing redundant computations
and communication overhead.

e On-start trigger (onStart): Executes once at applica-
tion deployment, useful for persistent components like
messaging listeners that handle actuation signals between
edge and cloud nodes.

4.3. Network traffic reduction

The Edge layer can reduce communication overhead
through aggregation methods, which is crucial in high-
frequency domains, such as power systems. Each physically
bound digital sensor object maintains a rolling window that
stores recent measurements. Each entry consists of a timestamp
and one or more recorded values, depending on the sensor type.



Rolling windows serve multiple purposes within the digital
twin architecture. Functions can leverage them to compute re-
sults over recent time frames, but their primary role is to enable
aggregation. Without aggregation, sending each measurement
separately would overwhelm the network as the number of dis-
tributed nodes scales. Instead, edge nodes can transmit entire
rolling windows—preserving all data while controlling trans-
mission frequency—or apply aggregation methods that further
reduce message size. The latter is particularly useful in environ-
ments with a high density of sensor information. In Section 5,
we explore the implementations of different aggregation meth-
ods.

5. HP2C-DT framework

The HP2C-DT framework is a full implementation of the
HP2C-DT reference architecture, that provides a modular and
extensible software solution to deploy digital twins that take ad-
vantage of edge, cloud, and HPC environments. It defines stan-
dardized components for device management, computation,
communication, and data aggregation. This way, the frame-
work enables developers to implement domain-specific digital
twins while benefiting from a robust underlying infrastructure
that simplifies integration. Through its modular design, it sup-
ports hardware-agnostic deployment, making it suitable for a
wide range of industrial applications.

In this framework, edge and cloud nodes run as Java appli-
cations inside Docker containers [15]. Java ensures platform
independence, efficient concurrency, and access to a rich set
of libraries, while the Docker container isolates dependencies
and configurations, ensuring that each edge node runs in a con-
trolled and reproducible environment free from compatibility
issues. Each of these nodes contains an instance of a COMPSs
agent [16] that implements the Parallel and Distributed Execu-
tion component of the reference architecture.

For communication, RabbitMQ [17] is used as the mes-
saging middleware, with a central broker running in the Cloud
layer. This setup supports both publish-subscribe and point-to-
point messaging, as required by the reference architecture. Rab-
bitMQ offers message decoupling while also providing features
such as queuing, delivery guarantees, and clustering. Its flexi-
bility and open-source nature allow for partial decentralization,
prevent vendor lock-in, and support the hybrid communication
model defined by the HP2C-DT reference architecture.

The HP2C-DT framework is available for public use!. The
following sections go through the most significant features of
the framework.

5.1. COMPSs Agents

COMPSs is a programming framework designed to boost
developers’ productivity working on parallel and distributed ap-
plications. By abstracting the complexity of parallel and dis-
tributed execution, COMPSs allows developers to focus on al-
gorithm design without worrying about low-level details such

!For intellectual property concerns, a link to the repository will be added
after the article is accepted for publication.

as task synchronization, data transfers, or workload distribu-
tion.

To do so, COMPSs follows a task-based approach. Pro-
grammers write sequential code in a plain major programming
language—currently, it supports Java, Python, and C/C++—
with no reference to any specific API to explicitly manage in-
frastructure and parallelism. By defining an interface or using
decorators, programmers select a set of methods whose invoca-
tions will be replaced by an invocation to a runtime system that
will handle its execution as an asynchronous task. The runtime
system supporting the programming model analyzes the data
accessed by each invocation to detect potential data dependen-
cies with previously detected tasks and build a task-dependency
graph. The runtime orchestrates the execution of all detected
tasks across a distributed infrastructure, ensuring the sequential
consistency of the original code.

The Colony framework [16] introduces an agent-based de-
ployment strategy for COMPSs, allowing any node partici-
pating in the infrastructure to automatically convert sequential
functions into task-based workflows. By deploying an agent on
each node in the infrastructure—whether at the Edge or in the
Cloud layers—the HP2C-DT framework facilitates this trans-
formation, allowing functions (described in Section 4.2) to be
seamlessly converted into individual COMPSs tasks or orches-
trated into structured workflows with appropriate resource al-
location. This ensures that code execution fully leverages the
available computing resources, including multiple CPU cores,
GPUs, and other accelerators embedded in the node. In addi-
tion, the framework supports decentralized peer-to-peer orches-
tration of task executions. Agents collaborate to distribute the
workload, allowing a function triggered on the Edge to offload
all or part of its workflow to the Cloud layer or neighboring
edge nodes. Likewise, since COMPSs is compatible with HPC
environments, any task delegated by cloud or edge nodes can
be submitted to the HPC system and expanded into a complex,
parallel workflow.

5.2. Edge layer implementation

In the Edge layer, communications are implemented to
ensure adequate data exchange between edge nodes and
the Cloud layer. Each edge node runs a publisher func-
tion that sends messages to a RabbitMQ queue with the
routing key edge.<EDGE_ID>.sensors.<SENSOR_ID>,
which the server reads. Furthermore, a consumer
function listens for incoming actuation commands on
edge .<EDGE_ID>.actuators.<SENSOR_ID>.

Each edge node loads a JSON configuration file. Listing 1
shows part of a configuration file for an edge node labeled
edgel. The window-size field sets the default rolling win-
dow size for all devices, though individual sensors can override
it (see Section 5.2.3 for details on how the framework handles
data management). The comms section configures communi-
cation protocols and hardware-specific parameters. The field
devices lists the sensors and actuators. Section 5.2.1 provides
more details about this setup. The field funcs specifies the
computational functions that will run at the edge node, as ex-
plained in Section 5.2.2.



Listing 1: Example of global configuration of an edge node (Snippet from setup
file edgel. json).

{
"global -properties": {

"type": "edge",

"label": "edgel",
"window-size": 10,
"comms" :{

"modbus": {
"ip": "10.14.85.205",

)
}
1,

"devices": [

]’.‘.

"funcs": [

]

5.2.1. Device implementation hierarchy

The HP2C-DT framework implements the Device,
Sensor, and Actuator classes at the conceptual layer of the
digital object hierarchy, following Figure 2. These come as
a class for Device and interfaces for Sensor and Actuator,
ensuring that any digital device can be implemented by ex-
tending them. The Device class handles instantiation from a
JSON setup file, assigns labels and manages status availability.
The Sensor and Actuator interfaces enforce the implemen-
tation of sensing and actuating methods. Specifically, Sensor
requires a sensed method that dictates what happens when a
new measurement arrives, including triggering computations
and storing rolling windows. Similarly, Actuator defines how
commands are received and executed. Developers can extend
Device and implement Sensor or Actuator to support new
measurement types while ensuring compatibility with the exist-
ing system.

The framework provides pre-implemented domain-specific
classes that serve both as examples and as foundations for
hardware-specific implementations. The current implementa-
tion focuses on power systems, offering abstract classes such as
Ammeter, Voltmeter, Wattmeter, Generator, and Switch.
The first three implement the Sensor interface and the last two,
both Sensor and Actuator. Developers can use these as tem-
plates to create additional domain-specific classes. The built-in
MeasurementWindow, defined on each of the abstract classes,
maintains rolling windows of previous measurements, allowing
historical data analysis (see Section 5.2.3). In a similar way,
concrete classes that handle communications with hardware are
provided at the implementation-specific layer.

Listing 2 shows a continuation of the edge configuration file
in Listing 1 in which we set up a voltmeter object. The 1label
field assigns a human-readable identifier, such as Voltmeter
Genl. The driver field specifies the concrete class, in this
case, ConcreteVoltmeter, an implementation-specific com-
ponent that ensures correct communication with the hardware
on the Edge. The properties section defines operational pa-
rameters: comm—-type specifies the Modbus protocol, indexes
selects measurement channels, window-size determines the
size of the rolling window (overriding the general window size

set in global properties for this specific device, if set), and
aggregate configures aggregation, here set to a phasor rep-
resentation (see Section 5.2.3). Users can specify multiple de-
vices in the configuration file.

Listing 2: Example of configuration of devices (Snippet from setup file
edgel. json)

{
"global -properties": {
},
"devices": [
{
"label": "Voltmeter Genl",
"driver": "es.bsc.hp2c.edge.manufacturerl.
ConcreteVoltmeter",
"properties": {
"comm-type": "modbus",
"indexes": [1],
"window-size": 5,
"aggregate": "phasor"
}
},
1,
"funcs": [
]
}

5.2.2. Functions

HP2C-DT functions can be implemented in Java, the ar-
chitecture’s native language, or Python, which is supported
through UNIX domain sockets for local execution. Each func-
tion follows a fixed signature, always receiving three argu-
ments: a list or map of sensors it can access, a list or map of
actuators it can control, and a map of additional parameters
specific to the function’s requirements. This signature allows
users to define various computational operations, such as model
training, inference, state verification, or other custom computa-
tions. Additionally, the implemented triggers (see Section 4.2)
allow the execution of functions on demand.

Listing 3 shows the definition of functions in the func block
through an example function, VoltLimitation, which trig-
gers an action to disconnect the edge node from the grid when
overvoltage is detected. The lang field specifies that this func-
tion is written in Java. The entry type specifies whether the
function executes immediately or can be deferred. Here, the
value synchronous indicates that the function’s computation
is urgent and must be performed as soon as it arrives. Other-
wise, for the asynchronous cases, the execution would not be
immediate and could even be offloaded to other nodes in the
architecture, which would, in turn, be handled by the COMPSs
agent.

The method-name field provides the fully qualified class
path where the logic of the function lies. The parameters
section defines the function’s inputs and outputs. In this ex-
ample, the function processes data from the Voltmeter Genl
sensor and controls the Three-Phase Switch Genl actuator
to disconnect the system. Furthermore, an additional parame-
ter, threshold, is listed in other, indicating that the function
enforces a voltage limit of 400 volts. The trigger section
specifies that this function operates in an event-driven man-
ner, using the onRead mechanism to execute upon receiving



new sensor data (refer to Section 4.2 for information about the
available function-triggering modes). The trigger-sensor
field ensures that only readings from Voltmeter Genl initiate
execution, while the interval parameter configures the func-
tion to activate every five measurements instead of every single
reading.

Listing 3: Configuration of functions (Snippet from setup file edgel. json).

{
"global -properties": {

1,

"devices": [

1,
"funcs": [
{
"label":
"lang": "Java",
"type": "synchronous",
"method-name": "es.bsc.hp2c.edge.funcs.
VoltLimitation",
"parameters": {
"sensors": ["Voltmeter Genl1"],
"actuators": ["Three-Phase Switch Genl1"],
"other": {
"threshold": 400
}
1,
"trigger": {
"type": "onRead",
"parameters": {
"trigger-sensor":
"interval": 5

"VoltLimitation",

["Voltmeter Genl"],

5.2.3. Aggregation and rolling windows

For data management, the HP2C-DT framework uses
rolling windows that store measurements in each device object.
The rolling window is implemented as a circular buffer: when it
reaches full capacity, the oldest measurement is automatically
replaced by the newest one. This design ensures constant-time
insertions and deletions, making it optimal in both time and
memory efficiency. Since no memory reallocation or element
shifting is required, access to recent data remains fast.

The framework also provides implementations of aggrega-
tion methods, as seen in Section 4.3, specifically the domain-
agnostic ones: all, average, sum, and last. The all method
is the trivial case where every measurement in the window
is sent. sum transmits the sum of all values in the window,
average computes and sends the mean, and last retains only
the most recent value. Aggregation methods are easily config-
urable in the edge setup file, as indicated by the aggregate
field in Listing 2. In addition, domain-specific aggregation
methods may be useful, and the framework’s modular design
allows them to be easily integrated.

A particularly valuable implementation is the phasor repre-
sentation [18], which provides a compact representation of os-
cillatory signals. Phasor aggregation represents a periodic sig-
nal through a single complex number that encodes amplitude
and phase. Given a sinusoidal signal with amplitude A, angular

frequency w, and initial phase ¢,
x(t) = A cos(wt + ¢) (1)

its phasor representation is X = Ae/? or X = AZ¢. This means
that a steady-state sinusoidal signal x(¢) can be represented by
only two parameters, its amplitude A and its angle ¢. We imple-
ment the phasor aggregation method using a Discrete Fourier
Transform (DFT) approach to process the time series windows.

Data aggregation induces information loss, which in turn
can be assessed using the Mean Squared Error (MSE), emsE,
a standard metric for signal reconstruction fidelity. For a sen-
sor producing a single value per measurement, given a rolling
window X = {x{, xp,...,x,} of size n, the information loss in-
troduced by an aggregation function is:

emse = E [(X - 2] @)

where X represents the estimated reconstruction of X from the
aggregated value Y = f(X).

For average aggregation, the estimate is simply x; = Y =
}l > xi, leading to:

1
Eavg = (1 - Z)ai 3)

which shows that for large 7, nearly all variance is lost.

For last-value aggregation, all previous values are ignored.
Assuming an autoregressive process with correlation p between
consecutive samples, the reconstruction error is:

Elast = (1 = p*)oy )

If p = 1, little information is lost, but for uncorrelated data
(o = 0), most information is discarded.
The phasor transformation retains full information for pure
sinusoidal signals:
Ephasor ~ 0,  if x(?) is a steady-state sinusoid (®)]
For signals with harmonics or noise, phasor aggregation filters

out these components, leading to an effective information loss

of:
P fundamental ( 6)

Ephasor 1 Pt
where Pfyndamental 18 the power of the fundamental frequency
component and P, is the total signal power.

This analysis shows that information loss increases with n
for sum and average aggregation, making them useful for noise
smoothing but unsuitable for precise real-time tracking. Last-
value aggregation, however, is more effective for highly corre-
lated signals, as it retains the most recent relevant information
with minimal error. Domain-specific methods such as the pha-
sor representation can be particularly effective. In these cases,
aggregation drastically reduces the size of messages while pre-
serving essential signal characteristics, making it a practical
choice for data aggregation.



5.3. Cloud layer implementation

The Cloud layer maintains a collection of virtual digital ob-
jects, each representing a physical device linked to an edge
node. This collection updates dynamically with every incom-
ing heartbeat and measurement, both of which are managed by
the main RabbitMQ broker also running alongside the Cloud.
The broker also handles point-to-point actuation towards edge
nodes.

To reduce communications beyond data aggregation, the
Cloud can perform internal simulations to estimate device states
when data is missing, delayed, or intentionally reduced to op-
timize communication. A two-sided simulation mechanism al-
lows both the Edge and Cloud layers to estimate states inde-
pendently, triggering data exchange only when discrepancies
between estimations and actual measurements arise.

For time series data management, the Cloud layer integrates
InfluxDB [19], optimized for fast ingestion and retrieval of sen-
sor data, supporting downsampling and retention policies. The
Cloud hosts an instance of this database, along with a dedicated
database handler with utility methods for querying and writing
data.

Monitoring, visualization, and user interaction rely on
Django [20] and Grafana [21]. Django serves as the web in-
terface, allowing operators to monitor the status of edge nodes,
track alarms, and perform manual actuation on distributed
nodes. It also manages user authentication and integrates with
the central database to display system updates in real-time.
Grafana complements Django by embedding dynamic monitor-
ing panels directly into the interface, offering real-time visual-
ization of trends, anomalies, and system behavior. To facilitate
external interactions, the Cloud layer exposes a REST API, en-
abling services such as real-time data sharing, status retrieval,
and edge node configuration management.

Finally, the Server layer uses a JSON configuration file sim-
ilar to that in edge nodes, but without a devices field. Instead,
its knowledge of virtual digital objects is derived dynamically
from edge node heartbeats rather than direct physical connec-
tions.

6. Experimental evaluation

6.1. Case study

Electric system operators currently use models that capture
the actual state of their networks through Supervisory Control
and Data Acquisition (SCADA) systems, allowing human op-
erators to make informed decisions from a centralized control
room. To make such decisions, operators mainly rely on the
current state of the network, along with studies conducted us-
ing static (e.g., power flow) and dynamic (e.g., phasor-based)
models extracted from the SCADA system.

This centralized approach has several limitations, includ-
ing low-bandwidth decision-making, limited automation, and
restricted control at the Edge. At the same time, the rise of
renewable energy is shifting power systems from a central-
ized, controllable setup to a more variable and decentralized
one. Addressing these limitations requires a more distributed
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and high-performance approach, which the HP2C-DT frame-
work provides. It supports HPC, which allows for Electromag-
netic Transient (EMT) simulations while keeping the traditional
power flow and phasor-based models available, ensuring differ-
ent levels of fidelity. It also enables computations at the Edge,
where key assets of power systems—such as generators, power
converters, transformers, protection relays, and metering sta-
tions—operate as HP2C-DT devices with their corresponding
digital replicas.

6.2. Experimental setup

We use a real-time simulator to model the power grid un-
der different operating scenarios. The OPAL-RT hardware plat-
form, OP4512, [22] runs a real-time EMT model of the elec-
trical network using the Hypersim software [23], capturing dy-
namics in the kilohertz range. This is essential for accurately
modeling power systems dominated by renewable energy. In
our prototype, the OPAL-RT hardware represents the actual
electrical grid and provides input and output interfaces. We cre-
ate the necessary digital objects of the implementation-specific
layer to interact with it, as explained in Section 5.2.1. Edge
nodes run on a computing node directly connected to the OPAL-
RT, ensuring real-time interaction. The Cloud layer consists of
virtual machines hosted on an on-premise server at BSC, each
with 4 CPUs and 8 GB of RAM. HPC resources are provided
by the general-purpose partition of the MareNostrum 5 super-
computer, which consists of compute nodes equipped with two
Intel Xeon Platinum 8480+ processors—each with 56 cores at
2.0 GHz—for a total of 112 cores per node. Each node includes
512 GB of RAM and is interconnected via NVIDIA HDR In-
finiBand for high-throughput, low-latency communication.

6.3. Experiments

In this section, we evaluate the system’s performance
through experiments measuring (1) communication bandwidth,
(2) response time, and (3) HPC scalability. For this, we use the
experimental setup described above. In particular, for (3), we
select an application representative of a digital twin of a power
system: stability analysis.

Stability analysis helps adjust the operation point of a
power grid to specific operational objectives, such as reducing
power generation or maximizing renewable energy consump-
tion, without risking system stability. To enable stability anal-
ysis for real-time decision-making, we can leverage machine
learning (ML) models, which can be trained to serve as surro-
gate models. In power systems, ML-based surrogates can re-
place stability assessment tools and allow stability evaluations
to be carried out online on edge and cloud nodes [24].

However, training such ML models requires data. Although
the DT continuously collects measurements from the operation
of the actual system, such data may be insufficient to train accu-
rate ML-based surrogate models, which requires the creation of
a synthetic dataset [25]. We can generate the synthetic dataset
offline by exploring the operational space and applying conven-
tional tools for power system stability assessment at each point.
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Figure 3: Power grid digital twin concept diagram.

The HP2C-DT framework is well suited for this, as data explo-
ration and generation are highly parallelizable and the frame-
work integrates HPC throughout the digital twin’s architecture.
Due to this, we propose a data generator tool to evaluate com-
putation scalability on our prototype.

The tool starts by sampling the entire operational space and
progressively focuses on regions of higher interest—those in-
tersecting the stability margin of the system—using an entropy-
based criterion [26]. After this, the tool recursively divides the
variable space into subregions by segmenting the dimensions
with a higher impact on system stability. The execution param-
eters include the depth of exploration and the branching factor.
The variable space consists of the power injected by each gen-
erator, the power demanded by each load, and several converter
control parameters. The tool is implemented in Python using
the GridCal library [27], which specializes in power flow cal-
culations.

6.3.1. Experiment I1: Reducing communication overhead

In this experiment, we assess how rolling windows and ag-
gregation methods impact data transmission in the HP2C-DT
framework. The experiment varies two parameters: the sam-
pling interval Ty and the aggregation interval 7,,. The sampling
interval defines how often the hardware collects measurements
and sends them to the Edge layer. The aggregation interval de-
termines how frequently the Edge layer transmits data to the
Cloud layer. Additionally, for this experiment, we make the ag-
gregation interval define the rolling window size. For example,
if the sampling interval is 1 ms and the aggregation interval is
10 ms, each message sent to the cloud node is derived from a
rolling window of the last 10 measurements.
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We perform the experiment using a single edge node de-
ployed locally, and a cloud node running on an on-premises
server at BSC. We assign the edge node a single sensor that gen-
erates measurements at predefined acquisition intervals of 1 ms,
10 ms, 100 ms, and 1 s. Each acquisition interval is tested with
aggregation intervals of 1 ms, 10 ms, 100 ms, 1 s, and 10 s. The
case where both intervals are set to 1 ms represents the base-
line, where every measurement is sent individually. The cloud
node receives these messages and measures the data transmis-
sion rate in bytes per second, including message headers of the
RabbitMQ middleware.

Two aggregation strategies are tested. The first one is the
all aggregation, which groups all measured values without re-
ducing the number of data points. The second is the phasor
aggregation, which compresses a rolling window into a single
amplitude and angle value. Table 1 presents the results for all
aggregation, while Table 2 shows the results for phasor aggre-
gation. Each table displays the measured required bandwidth
for different acquisition-aggregation interval pairs, where rows
correspond to sampling intervals, and columns to aggregation
intervals. The results are the average of five separate executions
for each combination of parameters. Note that Table 1 includes
cases where Ty < T,, covering the limit case in which every
measurement is sent as a separate message. In contrast, Table 2
only includes cases where Ty < T,, as the aggregation method
requires a minimum number of measurements to operate.

The results for all aggregation (Table 1) show that increas-
ing the aggregation interval consistently lowers the required
bandwidth. However, the rate of improvement diminishes: in
the first row (1 ms acquisition interval), increasing the aggre-
gation interval from 1 ms to 10 ms reduces bandwidth by more



than 5x, but going from 10 ms to 100 ms only reduces it by
about 1.7x. This happens because the total number of mea-
surement data remains constant across each row, so the only
reduction in required bandwidth comes from decreasing mes-
sage overhead. The overhead effect is strongest for the smallest
aggregation intervals, as the number of messages per second de-
creases exponentially from left to right. Moving diagonally in
the table reveals the true effect of reducing both the number of
messages and the number of data points per message, leading to
a reduction in required bandwidth proportional to the sampling
interval.

Table 2 highlights the impact of actual data aggregation.
Since phasor aggregation condenses each rolling window into
just two floating-point values (amplitude and angle), the results
become independent of the sampling interval. The Required
bandwidth decreases proportionally with the aggregation inter-
val, achieving a nearly 10x reduction at each step. In contrast,
the all aggregation was limited by the need to transmit every
measured value, leading to diminishing improvements.

This experiment demonstrates the benefits of rolling win-
dows and aggregation in reducing data transmission overhead in
the HP2C-DT framework. Rolling windows alone significantly
lower the number of messages, reducing the impact of middle-
ware overhead. When combined with aggregation techniques
like phasor, which, in turn, takes advantage of domain-specific
knowledge, the total amount of transmitted data also decreases,
achieving a more efficient data flow while preserving essential
information. The HP2C-DT framework integrates these fea-
tures at the Edge layer, making it adaptable to domain-specific
digital twins with varying requirements for latency, bandwidth,
and data fidelity.

6.3.2. Experiment 2: Response time for IT/OT actions

The second experiment evaluates how functions behave in
HP2C-DT, focusing on their flexibility in synchronous/asyn-
chronous and distributed execution. Specifically, we measure
response times when an action is triggered by a sensor reading.
The response time is the duration between the sensor measure-
ment and the execution of a corresponding action on hardware,
such as closing a switch, after processing a computational task.
We test three execution modes:

1. The function runs sequentially on the edge node.

2. The function executes as a workflow on the edge node
using COMPSs.

. The function offloads execution as a workflow on a cloud
node using COMPSs.

The setup follows the same structure as in Experiment 1.
In this case, we configure the system so that the edge node
operates with one computing unit for sequential execution (1)
and two computing units for workflow execution (2), while the
cloud node uses four computing units (3). This setup reflects
a real-world edge-cloud environment, where cloud nodes typ-
ically have more computational power than edge nodes. The
goal is to determine whether offloading computation to the
cloud improves performance and under what conditions. It also
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allows us to assess the benefits of internal parallelization within
the edge node.

The experiment examines two sources of overhead: compu-
tational overhead from COMPSs task management and commu-
nication latency from transmitting execution requests. To assess
computational impact, we test functions with different work-
loads, specifically matrix multiplications of increasing sizes.
The computation is parallelized by dividing the multiplication
into m? blocks of size b, where m is the number of blocks per
dimension and b is the block size per dimension. Each time the
sensor records a measurement, it triggers a computation task
executed through one of the three modes. Once the workflow
completes, the function signals a device, the MsgAlert actua-
tor, printing the result and measuring the total time from mea-
surement to result generation.

Figure 4 shows the results. For small tasks (lower values
of b), parallelizing the workflow on the edge node or offload-
ing it to the cloud offers no advantage. As task size increases,
there is a break-even point at approximately b = 16, beyond
which offloading reduces response times. Furthermore, as the
number of tasks in the workflow increases (higher values of m),
offloading to the cloud becomes increasingly beneficial. For
the configuration with m = 4 and b = 256, we observe a 2x
speedup in two scenarios: when comparing edge execution (2
CPUs) to sequential execution (1 CPU), and when comparing
server execution (4 CPUs) to edge execution. Note the logarith-
mic scale on the y-axis, so visual differences in execution time
do not directly reflect proportional speedups.
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Edge Sequential, m = 2
10°F Edge Sequential, m = 4
Edge Parallel, m = 1
Edg
Edge Parallel, m = 4
Cloud, m =1
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Figure 4: Experiment 2: Response time results.

Note that the three operation modes shown here are auto-
matically transitioned to by the HP2C-DT framework depend-
ing on the needs. The synchronous character of each function
is easily defined in the setup files of each node in the network.
Plus, when asynchronous, the computing is (a) internally paral-
lelized if possible, and (b) orchestrated and distributed to other
resources available seamlessly.



Table 1: Required bandwidth (bytes/s) for all aggregation method.

Sampling

Interval, Aggregation Interval, T, (ms)
T (ms) 1 10 100 1000 10000
1 | 473009 90500 52250 48425 48043
10 47299 9050 5225 4843
100 4730 905 523
1000 473 91
10000 47

6.3.3. Experiment 3: Scalability of HPC workloads

This experiment evaluates how well HPC resources scale
when handling computationally intensive tasks. As a test case,
we use the power grid data generator described earlier, ap-
plied to the IEEE 118-bus transmission model [28]. The ex-
periment explores a variable space that includes the power de-
livered by the 53 converter, the proportion of grid-following
vs. grid-forming operation for each converter, the power con-
sumed by the 91 loads, and the control parameters of each con-
verter. The computations are parallelized and distributed using
the COMPSs framework and executed on the MareNostrum 5
supercomputer at BSC.

We conduct a strong scaling test, keeping the problem size
constant while progressively increasing the computational re-
sources. The test starts with a single node, which has 112 CPUs.
The number of nodes is then doubled, progressing as follows:
1 node (112 CPUs), 2 nodes (224 CPUs), 4 nodes (448 CPUs),
8 nodes (896 CPUs), 16 nodes (1,792 CPUs), 32 nodes (3,584
CPUs), and 64 nodes (7,168 CPUs). The data generator ex-
plores the variable space down to a depth of 3 levels, with a
branching factor of 4 children per parent subregion, and ana-
lyzes 170 operation points per subregion. This results in a total
of 14,450 grid stability tasks, each lasting an average of 23.62
seconds. The exploratory nature of the problem and the sub-
region analysis make it a non-trivial parallel problem, as it re-
quires careful coordination and cannot simply be treated as an
embarrassingly parallel application.

Figure 5 presents the scalability results in terms of speedup
and execution time. Each configuration is tested with five runs.
The results show that speedup remains close to ideal up to 16
nodes. At 32 nodes, the speedup remains acceptable but de-
viates from the ideal curve, while at 64 nodes, performance
saturation is evident. This behavior is expected in strong scal-
ing tests, as increasing the number of nodes eventually leads to
higher scheduling overhead. In this case, the need to effectively
distribute tasks and aggregate results becomes more challeng-
ing, and the benefits of additional parallelism diminish at higher
scales.

Beyond raw scalability, the practical impact of HPC re-
sources is significant. With 32 nodes, the execution time is re-
duced to approximately one hour, compared to multiple hours
on a single high-performance server. Even with 16 nodes, the
execution takes below two hours. In a digital twin scenario,
this level of performance would enable real-time grid stabil-
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Table 2: Required bandwidth (bytes/s) for phasor aggregation method.

Sampling
Interval, Aggregation Interval, T, (ms)
T (ms) 10 100 1000 10000
1 | 49300 4930 493 49
10 4930 493 49
100 493 49
1000 49

ity assessments with hourly updates, as opposed to daily re-
calculations. This higher update frequency would significantly
improve prediction accuracy and system responsiveness, which
would be impractical in a cloud-based infrastructure due to cost
and inconsistent performance.

7. Conclusion

This article presents a reference architecture that enables
seamless coordination between physical devices, cloud nodes,
and HPC resources. By distributing tasks based on their
requirements—real-time processing at the Edge, global coor-
dination in the Cloud, and intensive computation in HPC—the
system balances efficiency and scalability. A key feature is the
integration of HPC into the digital twin life cycle, allowing
for large-scale probabilistic simulations and optimization tasks,
alongside exclusive resource allocation and improved data pri-
vacy. At the same time, the architecture retains cloud-based
tools for user interaction and global monitoring.

The HP2C-DT framework implements this architecture, not
just specifying suitable technologies but also providing a flexi-
ble structure to integrate domain-specific components. Powered
by COMPSs agents, each node in the network can offload tasks
to peer edge/cloud nodes or HPC resources as needed. We test
the framework through experiments of communication band-
width, response time, and computing scalability, which demon-
strate the framework’s effectiveness in a power system applica-
tion.

Future work will focus on decentralizing the architecture
by organizing edge nodes into subclusters to improve availabil-
ity and enable fail-resilient configurations. Additionally, ef-
forts will focus on refining the lifecycle of digital twin mod-
els—whether physics-based or data-driven—to ensure their
continuous adaptation and deployment across Edge and Cloud
layers. This includes integrating adaptive machine learning ca-
pabilities that autonomously learn from sensed data, allowing
real-time refinement of the digital twin.
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